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Abstract: The use of P.D.E. (Partial Differential Equations) in Differential Geometry has a long standing history. Very 
particularly this has happened within the topic of Classificatory Problems in Affine Differential Geometry, where it has 
played an essential role helping to obtain a better understanding of every one of those problems and where, besides, it 
has provided essential tools for arriving at rigorous solutions which, otherwise, would be very difficult, if not 
impossible, to obtain. One of those problems is to try to achieve the classification of those affine hypersurfaces with 
parallel difference tensor, initially treated by F. Dillen and L. Vrancken, who obtained partial results in lower 
dimensions, without appealing to P.D.E. 
It is the purpose of this article to consider the problem and obtain, as the title indicates, a characterization of that class 
of hypersurfaces by means of Partial Differential Equations, particularly of Monge-Ampère type. 
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1. INTRODUCTION 

The problem of classifying hypersurfaces with affine normal parallel Difference Tensor was started by F. 
Dillen and L. Vrancken in their interesting paper [1]. The first, very important result they proved reads as 
follows: 
 
Theorem (A). Let nM  be an affine hypersurface in 1n+  with parallel difference tensor, 0K∇ = . If 
K  is not equal to zero at some point, then nM  is an improper affine hypersphere whose affine metric is 
flat. Further, there exists a number m : 2 m n≤ ≤  such that 1mK −  is different from zero and 0mK = . 
Besides, nM  is given as the graph of a polynomial of degree 1m +  with constant Hessian. 
 
There are other, related results which are proven in the paper and, by using all this, they study diverse 
instances of the integer values for n  and m , to obtain a partial classification of some cases, particularly in 
lower dimensions 2,3, 4n = . Nevertheless, it should be said, first of all, that the geometrical and 
analytical properties described in the above theorem are not characterizing. In fact, consider the 
hypersurface described by the graph immersion 

( ) 2 2
1 2 3 1 2 1 3 3, ,f t t t t t t t t= + +  

Then, it is easy to see that this satisfies 0K∇ ≠ , 2 0K ≠ , and 3 0K = . 
Furthermore, and as a consequence of this fact, the classification obtained in the mentioned paper is not 
complete, at least for dimensions 3  and 4 . 
The object of the present paper is to characterize, by means of Partial Differential Equations of Monge-
Ampère type, the geometrical and analytical properties of the class of Hypersurfaces, in reference to the 
problem considered. We conjecture that this characterization is the appropriate tool to be used with the 
purpose of trying to complete the classification, initially for lower dimensions and then, hopefully, also for 
the higher ones. In this sense, let us state here that the method of work to be used has already been 
introduced by one of us in previous papers, where the classification of affine hypersurfaces with parallel 
Second Fundamental (Cubic) was studied, see [2, 3, 4], obtaining the full classification of the cited class of 



hypersurfaces. The comparison with the results exposed in those articles is clear because, by using the 
methods introduced in this paper, it can be seen that, in fact, the classification shall depend not only on the 
integer value m , as described above, but also on two other integer values that we shall label as k  and r  
with 1 2k n≤ ≤ , 1 1r n≤ ≤ − , with the same meaning as in the cited articles. 
The present article is organized as follows: in Section 2, we introduce the necessary tools pertaining to the 
unimodular affine geometry of hypersurfaces, for dimensions greater or equal than two, that are essential 
for the better understanding of the problem considered. We shall use the so-called structural language for 
connections, used in [5], although it should be said that other authors refer to this as the language of Koszul 
for connections or, more directly, Koszul Connections. In the final Section 3 we obtain the characterizing 
geometrical and analytical properties of the class of hypersurfaces under consideration. 
 
 
2. AFFINE HYPERSURFACE GEOMETRY 
 
Let nM  be an n − dimensional manifold of class C∞  and 1: nF M +→  an immersion enough 
smooth, for example we can take directly of class C∞  in order to avoid further discussions on the matter. 
We assume that the affine space 1n+  is provided with its usual flat affine connection D  and a fixed 
parallel volume element ω . 
A differentiable vector field η  it said to be transversal to ( )F M  if at each point p  in M  and for any 

referential ( )1,..., nX X , the vectors ( ) ( )1p
F X∗ ,…, ( ) ( )np

F X∗ , pη  form a basis of 

( ) ( )1 1n n
F pT + + . Obviously, this condition is equivalent to requiring that ( )1,..., , 0nX Xω η ≠ . 

For the sake of simplicity, we shall identify ( )F X∗  with X  for each ( )X M∈X . 
For an arbitrary transversal vector field η  we have the following structures: 
A non trivial volumes form θ  
(2.1)    ( ) ( )1 1,..., ,..., ,n nX X X Xθ ω η=  

A tensor S  of type ( )1,1  and a form τ  by means of the Weingarten’s structural equation 

(2.2)    ( )XD SX Xη τ η= − +  

A bilinear form h  and a torsion free−  connection ∇  satisfying the formula of Gauss 
 
(2.3)    ( ),X XD Y Y h X Y η= ∇ +  
 
The symmetric bilinear form h  is called the affine fundamental form relative to the transversal vector field 
η . 

We are interested in verifying if the couple ( ),θ∇  defines an affine unimodular structure, that is, if  

0θ∇ = . Since θ θ τ∇ = ⊗ , the condition 0θ∇ =  is equivalent to 0τ = . [5]. 
If the affine fundamental form h  is nondegenerate, we have a volume form hω  defined by  

( ) ( ) 1 2

1,..., det ,h n i jX X h X Xω  =    

 
If we choose an arbitrary transversal vector field η , then we obtain on M  the affine fundamental form 
h , the induced connection ∇  and the induced volume element θ . We want to achieve, by means of an 
appropriate choice of θ , the following two goals: 



(I):   0θ∇ =  
(II):    hω θ= . 

For each point p  in M , there is a transversal vector field ξ  defined in a neighborhood of p  satisfying 
the conditions (I) and (II) above [5]. Such a transversal vector field is unique up to sign. 
This transversal vector field is called the affine normal field and the induced connection ∇ , the affine 
fundamental form h , and the affine shape operator S  make up the so called Blaschke structure ( ), ,h S∇  

on the hypersurface M . The induced connection ∇  is independent of the choice of the sign of ξ  and is 
called the Blaschke connection. 
For an immersion of this type we have the following identities: 
(2.4)   ( )( ) ( )( ), ,X Yh Y Z h X Z∇ = ∇   Codazzi equation for h  

(2.5)   ( ) ( )X YS Y S X∇ = ∇    Codazzi equation for S  

(2.6)   ( ) ( ), ,h SX Y H X SY=   Ricci equation 

(2.7)    0θ∇ =      Equiaffine condition 
(2.8)   hω θ=      Volume condition 

(2.9)   0hω∇ =     Apolarity condition 
 
If the connection ∇  is torsion free, for the curvature tensor field R  hold the first and the second Bianchi 
identities: 
(2.10)   ( ) ( ) ( ), , , 0R X Y Z R Y Z X R Z X Y+ + =  

(2.11) ( )( ) ( )( ) ( )( ) ( )( ), , , , , , , , 0X Y Z WR Y Z W R Z W X R W X Y R X Y Z∇ + ∇ + ∇ + ∇ =  
 
Definition 1. The Ricci tensor field, which is a geometrical object of type ( )0,2  is given by 
 
(2.12)    ( ) ( ){ }Ric , trace ,Y Z X R X Y Z= → . 
 
The tensor field R  satisfies the fundamental equation 
 
(2.13)   ( ) ( ) ( ), , ,R X Y Z h Y Z SX h X Z SY= −  
 
and from the latter we obtain 
 
(2.14)    ( ) ( ) ( ) ( )Ric , Tr , ,Y Z S h Y Z h SY Z= −  
 
From the Codazzi equation (2.4) it is seen that the Second Fundamental, Cubic form C  given by 
 

( ) ( )( ), , , ,C X Y Z h X Y Z= ∇  
 
is symmetric on X  and Z . 
 

If we denote by ∇  the Levi-Civita connection of h , we can consider the tensor field K  given by the 

difference between the connections ∇  and ∇ . This tensor field, which is of type ( )1,2 , called the  



Difference Tensor is defined by 
 

( ), X XK X Y Y Y= ∇ −∇  
 

Since ∇  and ∇  are free of torsion, we have ( ) ( ), ,K X Y K Y X= . Moreover, it can be seen that 

( ) ( )( ), , 2 , ,C X Y Z h K X Y Z= − . Therefore, the cubic form C  is symmetric in all three arguments. 
 
Proposition 2. Let 1: nF M +→  be a nondegenerate immersion, then we have: 

a) 0S =  if and only if 0R = . 
b) 0Ric =  if and only if 0S = . 

Proof. See [5]. 
 
We have, moreover, the Mainardi-Codazzi equation 
 

(2.15)   
( )( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
, , , , , , , , , ,

, , , ,

C Y Z W X C X Z W Y h X Z h SY W h Y Z h SX W

h X W h SY Z h Y W h SX Z

∇ − ∇ = −

+ −
 

 
and, the Gauss condition 
 

(2.16)     

( ) ( ) ( )( )

( ) ( )( )
[ ]

1, , ,
2
1 , ,
2

,X Y

R X Y Z h Y Z SX h X Z SY

h SY Z X h SX Z Y

K K Z

= −

+ −

−

 

 
where R  is the curvature tensor corresponding to the affine metric. 
 
Definition 3. A Blaschke hypersurface M  is called an improper affine hypersphere if 0S = . If 
S Iλ= , where λ  is a nonzero constant, then M  is called a proper affine hypersphere. 
 
Proposition 4. Let 1: nF M +→  be a nondegenerate immersion and assume that M  is a connected 
manifold, then the following statements are equivalent: 

a) ( )F M  is an affine hypersphere. 

b) C∇  is totally symmetric. 
c) C∇  is totally symmetric. 

Proof. By using X X XY Y K Y∇ = ∇ +  it is easy to see that 

( )( ) ( )( ), , , ,X YA C Y Z W C X Z W= ∇ − ∇  

can be written as 
(2.17)      ( )( ) ( )( ), , , ,X YA C Y Z W C X Z W= ∇ − ∇ , 

which implies that C∇  is totally symmetric if and only if C∇  is totally symmetric. 
If C∇  (or C∇ ) is totally symmetric, by (2.15) we have 
 



(2.18)   
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

0 , , , ,

, , , ,

h X Z h SY W h Y Z h SX W

h X W h SY Z h Y W h SX Z
= −

+ −
 

 
From this equality we obtain, by taking the trace of the linear map, ( )1 TrnSY S Y= , that is, M  is an 
affine hypersphere. 
On the other hand, the equality S Iλ=  implies, by (2.15), that C∇  is totally symmetric.                   □ 
 
Lemma 5. The following formula is a consequence of the definitions of K , C  and   

( ) ( )( ), , 2 , ,C X Y Z h K X Y Z= − . 

(2.19)  ( )( )( ) ( )( ) ( )1, , , , 2 ,
2X X X Yh K Y Z W C Y Z W h K K Z W∇ = − ∇ + . 

Proof. If we write ( )( )( ), ,XA h K Y Z W= ∇ , we can further obtain that 
 

(2.20)    
( )( ) ( ) ( )( )

( ) ( ) ( )
, , , ,

, , ,
X X X

X Y Z X Y X

A h K Y Z K Y Z K Y Z W

h K Z W h K Y W h K Z W

= ∇ − ∇ − ∇

= ∇ − ∇ − ∇
 

 
Now, by using the equality ( ) ( )( ), , 2 , ,C X Y Z h K X Y Z= − , we see that the quantity H  given by 

( ) ( ), ,Z X Y XH h K Y W h K Z W= − ∇ − ∇ , can be written as 
 

( )( ) ( )
( ) ( )

1 , , ,
2

, ,

X X Y

X Y Y X

H C Y Z W h K K Z W

h K Z W h K Z K W

= − ∇ +

− ∇ +
 

 
Replacing in (2.20) we obtain 
 

(2.21)      

( )( )( ) ( ) ( )( )
( ) ( ) ( )

( )( ) ( ) ( )

1, , , , ,
2

, , ,
1 , , , ,
2

X X Y X

X Y X Y Y X

X X Y Y X

h K Y Z W h K Z W C Y Z W

h K K Z W h K Z W h K Z K W

C Y Z W h K K Z W h K Z K W

∇ = ∇ − ∇

= − ∇ +

= − ∇ + +

 

 
and the last term of the right hand side can be written as 
 

( ) ( ) ( )

( ) ( )

1, , , ,
2

1 , , ,
2

Y X X Y Y

Y X Y

h K Z K W h K W K Z C X W K Z

C X K Z W h K K Z W

= = −

= − =
 

 
Then finally 
 



(2.22)            ( ) ( )( ) ( )1, , , 2 ,
2Y X X X Yh K Z K W C Y Z W h K K Z W= − ∇ +  

 
and the lemma is proved.                           □ 
 
Lemma 6. K∇  is totally symmetric if and only if S Iλ=  and [ ], 0X YK K =  for each X  and Y . 

Proof. Interchanging X  and Y  in (2.20) and subtracting we obtain that 
( )( )( ) ( )( )( ), , , ,X YA h K Y Z W h K X Z W= ∇ − ∇  can be written 

 

( )( ) ( )( )( ) [ ]( )1 , , , , 2 , ,
2 X Y X YA C Y Z W C X Z W h K K Z W= − ∇ − ∇ +  

 
By using (2.15), (2.17) and (2.13) the first term T  in the right hand can be written 
 

(2.23)     

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

( )( ) ( )( )( )
( )( )( )

1 , , , ,
2
1 , , , ,
2
1 , , , ,
2
1 , ,
2

T h X Z h SY W h Y Z h SX W

h X W h SY Z h Y W h SX Z

h R X Y Z W h R X Y W Z

R X Y h Z W

= − −

− −

= − − −

= −

 

 
which is symmetric in Z  and W , and the second is clearly skew-symmetric in Z  and W . 
Now, K∇  is totally symmetric if and only if 
 

( )( )( ) [ ]( )1 , , 2 , , 0
2 X YR X Y h Z W h K K Z W− + =  

 

which is equivalent to ( )( )( ), , 0R X Y h Z W =  and [ ]( ), , 0X Yh K K Z W = , but, by (2.23),  

( )( )( ), , 0R X Y h Z W =  if, and only if, C∇  is totally symmetric. Finally, by Proposition 4, ( )F M  

is an affine hypersphere, that is, S Iλ= .                          □ 
 
We remark that the condition [ ], 0X YK K =  implies that 0J = . It follows then that, if 0K ≠ , the 

affine metric is indefinite. ( J  is the Pick invariant classically defined by ( ) ( )1
1: ,n nJ h K K−= ). 

 
Lemma 7. If 0K∇ =  and 0K ≠ , then M  is an improper affine hypersphere. 
Proof. See [1]. 
 
Lemma 8. If [ ], 0X YK K Z =  for all Y  and Z , then XK  is nilpotent for each X . 
Proof. See [1]. 
 



 
3. CHARACTERIZING GEOMETRICAL AND ANALYTICAL PROPERTIES 
 
We are interested in studying nondegenerate hypersurfaces with affine normal parallel difference tensor 
which are not hyperquadrics, i.e. which satisfy the conditions 0,  0K K∇ = ≠ . Thus, the first result to be 
presented next is the one that expresses, from the theory developed so far, that the affine immersion 
fulfilling those two conditions, say ( )F M , must be an improper affine hypersphere, that it can be 

expressed in the form of Monge's, i.e. as a graph immersion, and that the graph function f  satisfies 
certain particular conditions.   
 
Theorem 9. Let nM  be a nondegenerate affine hypersurface in 1n+  with 0K∇ =  and 0K ≠ , then 
the following properties hold: 

a) nM  is an improper affine hypersphere. 
b) nM  is expressible in the form of Monge's, i.e., a graph immersion, and with respect to a suitable 

affine system of coordinates the graph function f  satisfies a Monge-Ampère type equation 

( )det 1i j f∂ ∂ = ± . Moreover, there exists a number { }2,3,...,m n∈  such that f  is a 

polynomial of degree 1m + . 
Proof. nM  is an improper affine hypersphere by Lemma 7 above. 
Since M  is an improper affine hypersphere, we have 0S = , then ∇  is flat and the affine normal ξ  is 

constant. Let us choose a coordinate system so that ( )0,0,...,0,1ξ = , then M  is given by 

( ) ( )( )1 1 1,..., ,..., , ,...,n n nF t t t t f t t= . Since ( )1,..., nt t  are flat∇−  coordinates on M  we have 
 

(3.1)     
2

, i j
i j i j

fh f
t t t t

 ∂ ∂ ∂= = ∂ ∂  ∂ ∂ ∂ ∂ 
 

 
and the Hessian of f  satisfies ( )det 1i j f∂ ∂ = ± . 

From (3.1) we have that 
 

(3.2)              ( ) 1 2

1 1 2

2 , ,
m

m m

m
m

i i i
i i i i i

fh f
t t t t t

−
 ∂ ∂ ∂∇ = = ∂ ∂ ∂  ∂ ∂ ∂ ∂ ∂ 

 . 

 
By Lemma 8 above and Lemma (3.4) of [1] (Page 49) there exists { }2,3,...,m n∈  such that 0mh∇ = . 

Hence , from (3.2) f  is a polynomial of degree 1m + .                            □ 
 
Our next goal is to present geometrical and analytical conditions which, when satisfied by a given graph 
function, are characterizing. 
 
Theorem 10. Let nM  be a nondegenerate affine hypersurface in 1n+  which is expressible in the form of 
Monge, i.e. as a graph immersion with respect to some affine system of coordinates in the ambient space 
( )1 1,..., ,n nt t t +  as ( )1 1,...,n nt f t t+ = , such that: 

a) The graph function f  is a polynomial function of degree 1m + . 



b) The graph function f  is a solution to the Monge-Ampère type equation ( )det 1i j f∂ ∂ = ± . 

c) The quantities ( )i ir
jk r j k

r
A h f= ∂ ∂ ∂∑  in those coordinates satisfy the conditions 

constanti
jkA = , with at least one of them different from zero. 

Then, nM  is an affine hypersurface with parallel difference tensor which is not a hyperquadric, i.e. it 
satisfies 0K∇ =  and 0K ≠ . Besides, in that case we further have that K  is a nilpotent operator with 
(the degree of the above polynomial function) { }2,3,...,m n∈ , 1 0mK − ≠ , 0mK = . 

Proof. In the above mentioned coordinate system, we have that, 0i
jkΓ = , and ij i jh f= ∂ ∂ , [2], so that 

we have the local coordinates ijkC  for the cubic form C  are given by ijk i j kC f= ∂ ∂ ∂ , then 

( )1 1 1
2 2 2

i ir ir i
jk rjk r j k jk

r r
K h C h f A= − = − ∂ ∂ ∂ = −∑ ∑ , therefore, clearly 0K ≠  and 0K∇ = . 

Hence nM  is an improper affine hypersphere by the previous Theorem 9 and ( )det 1i j f∂ ∂ = ± . 

Finally, the last result follows from lemma 8 above.                               □ 
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