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Abstract: The assessment of the effects of minor perturbations ofalatorrected score estimators in functional
measurement error models is considered by using a difiateygometrical framework proposed by Zhu et #nf.
Statist. 35 (2007) 2565-2588]. Am-dimensional Riemannian manifold, called the perturbati@anifold is defined.
The metric tensor can be used to choose an appropriatelpegitur vector. First and second-order terms on a covariant
version of the Taylor’'s theorem, based on the Levi-Civitareection, are used to define influence measures for the
corrected score estimator. To illustrate the calculatibthe geometrical quantities of interest, the simple linear
measurement error model is examined.
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1 INTRODUCTION

Local influence analysis is an important statistical tool because it camdprondication of bad model
fitting or of influential observations that could somewhat distort the pararastemates leading in some
cases to erroneous inference. The study of influence diagnostidsebasan active area of statistical re-
search since the seminal work of Cook ([6]), where a perturbatioarsehs introduced into the postulated
model through a perturbation vector, and the influence is studied via theahourvatures on the graph of
the likelihood displacement versus the perturbation vector. A generalizaitiGook’s approach and the
influence on the maximum likelihood estimate of any parameter in a regressiohisiptesented by [22].
Recently, [26] developed a differential-geometrical framework of &upleation model (called the perturba-
tion manifold). This method extends Cook’s approach in several aspgérgs. it is showed that the metric
tensor of the perturbation manifold provides important information abouttssdean appropriate perturba-
tion of a model. Second, new influence measures are defined for smgettivabfunctions, that avoid the
scale dependence of normal curvature for objective functions atspwith a nonzero first derivative ([8]).
In addition, the proposed second-order influence measures reduwasnal curvature under an appropriate
perturbation scheme for objective functions that have zero firstatesévat the critical point.

Influence diagnostic for measurement error models have receiveti@itenthe literature. Most works
derive influence functions or apply the local influence method of [6}, #)ahe so-called first order ap-
proach ([22]). [11] gave an influence function for the structural eled 7] defined the hat matrix using the
estimated predictor variable values and [21] proposed a one-stepapation to Cook’s distance. [23] and
[24] derived the influence functions for generalized linear and naalimeasurement error models. [13]
obtained some useful diagnostics based on the likelihood displacemetibfisifor generalized linear mea-
surement models. [25] presented a unified diagnostic method for lineaurag@nt error models based
upon the corrected likelihood of [15]. [9] considered influence angrbatic methods in homoscedas-
tic comparative calibration models in functional and structural versionguook's approach based on
the likelihood displacement. [18] considered the construction and prapeftiafluence functions in the
context of functional measurement error models with replicated data.

In functional measurement error models we are typically concerned witttstal parameter estimation
in the presence of incidental parameters. The failure of the likelihoodapprfor some models in such
situations ([16], [17], [20]) has motivated researchers to seektemative methods of estimation. One of
these is the corrected score approach ([15], [10]), which yieldmaat estimating equations independent of
the incidental parameters. Under convenient regularity conditionsated score estimators are consistent
and asymptotically normally distributed.

The aim of this paper is to assess the effects of minor perturbations ofdatarected score estimators
in functional measurement error models. Following the approach of [2@ain the perturbation manifold



for these models and the geometrical quantities associated for checkiogaate choice of a perturbation
vector and calculating influence measures.

The paper is organized as follows. Section 2 presents the functionauregsnt error model and
review estimation by using the corrected score approach. Section 3 emn#idal influence analysis.
Different perturbation schemes on the corrected score function drelétt The density of the perturbed
model which yields the perturbed corrected score and the statisticallprtur manifold is obtained. The
associated metric tensor and affine connection are calculated. In Sediisihatd second-order influence
measures for the corrected score estimator are defined. Section 5 ilsi#teatalculation of the geometrical
guantities of interest in the simple linear regression model. Numerical compustétoon a small data set is
also included. Concluding remarks are made in Section 6.

2 FUNCTIONAL MEASUREMENT ERROR MODELS

A measurement error model is a linear or non-linear regression model sulistantial) measurement
error in the variables, above all in the explanatory variable. Disregariiiese measurement errors in
estimating the regression parameters results in asymptotically biased, i.e.isteansstimators. This is
the motivation for investigating measurement error models.

On the other hand, most studies in the life sciences, biology, ecology andraccs involve variables
that cannot be recorded exactly. In engineering, the calibration ofuringdnstruments deals with mea-
surement errors by definition ([3]). Recently measurement error methee been applied in the masking
of data to assure anonymity ([2]). Many more examples and contribution téi¢ldscan be found in the
literature, in particular in [7], [4] and [5].

Suppose that we wish to estimate & 1 vector of paramete in an open subseb of R?, governing
the density functiorn(y; z,0) of ar x 1 random vector of responsgs depending on & x 1 vector of
covariatesz, unobservable because it is measured with error. Instead, we el@sswrrogats = z + u,
independent ofy, where the measurement ernotis normally distributed with mean zero and covariance
matrix X2, which we suppose known.

Inference is based on a samplenoindependent observatiofig;, x1), . . ., (yn, X» ). If the unobserved
covariateszq, . ..,z, are unknown constants, then the model is referred to as a functionall mode
z1,...,Zy are nuisance parameters whose number increases with the sample sidancalkntal param-
eters. Ifzq,...,z, are considered as a random sample from some distribution, then the moeferisa
to as a structural model. The terminalogy “functional” and “structural” istdu@2]. In practice it is hard
to decide which of these models is more relevant. In this paper we consiugioiual measurement error
models with normal measurement error. The parantetethe parameter of interest or structural parameter
and the unobserved covariates j = 1,...,n are incidental parameters pertaining to the observation
j=1,...,n. Letp(x;; z;,0) denote the density function af; depending orm;.

LetY be then x r matrix withy " as itsj-th row, X andZ then x k matrices withx] andz] as its
j-th rows, respectively. The density of the postulated model is given by

(Y, X:Z,0) = p(Y; Z,0)p(X: 2,0) = [ [ plyy:2;,0) [ (i 25.9),
j=1 j=1

whereZ is part of the parameters.
The log-likelihood, giverly andX is

n n

00,Z:Y,X) =Y (0,255y;) + ) _ U6, 25%;), 1)

J=1 J=1

wherel(8,z;;y;) = logp(y;; z;,0) andl(0,z;; x;) = log p(x;;z;,0).

2.1 ESTIMATION BY THE CORRECTED SCORE APPROACH

Itis not generally true that maximizing (1) produces consistent estimatér§23]). The problem is due
to the large number of nuisance parameters. The unwieldy functional likeliand its failure to produce



consistent estimators has motivated the search of alternative methods otiestima
[15], [19] and [10] consider the use of corrected score functionsié@asurement error models. The
approach depends on the existence of a fundié(f; Y, X), called a corrected score function, such that

E[U*(0;Y,X)|[Y,Z] =U(0;Y,Z) (2)

for all Y, Z and, whereU(0;Y,Z) = 860 logp(Y;Z,0) is the unobserved score function, that is, the

usual score if there were no measurement error. From (2), with theheilp iterative expectation principle
and the fact that the unobserved score is unbiaBédtan be seen as an unbiased estimating function, and
S0, under appropriate regularity conditions ([10]), it ex&ssolving

“(6;,Y,X) = ZU 0;y;,%;) =

which is a consistent and asymptotically normal estimator, called the correcteriestimator.

The corrected score method effectively estimates the estimator one wouitlithiee were no mea-
surement error. The corrected score function is independent of tideimal parameterg, so one can
directly find estimators of the parameters of intei¢stvoiding the problem of estimating the incidental
parameter&. However, corrected score function do not always exists. Existéepends critically on the
assumed normality of the measurement error. [15] derived correcbed B some common generalized
linear models.

3 LOCAL INFLUENCE ANALYSIS

We are interested on the assessment of effects of minor perturbatiosaobwl the corrected score
estimator of.

Letw = (wi,...,w,)? be a perturbation vectory € Q C R”, which is introduced to perturb
U*(0;Y,X). If whas a large effect, then it is important to know the cause (e.g. influentiahaii®ns or
invalid model assumptions) of such large effect.

Let U*(6; Y, X,w) denote the perturbed corrected score @afich vector representing no perturbation,
that is,U*(8; Y, X, w®) = U*(#;Y, X). The perturbed corrected score estimafar) solves the equation
U*(0;Y,X,w) = 0. We study each component of the vecﬁ@w) separately. As pointed out by [22], this
approach is sometimes more informative than studying mixed effects, whach, different sources, may
cancel out each other. In the followingfw) denotes a particular component of the veéias).

We need to know how the perturbatieraffects the postulated model. This implies to find the density of
the perturbed model(Y, X; Z, 8, w) such that/ p(Y,X;Z,0,w) dY dX = 1, from which we can obtain
U*(6;Y,X,w), havingp(Y, X; Z,0,0°) = p(Y, X, Z,6).

Note that we begin perturbing the corrected score, which is indepeantitg incidental paramete,
while the density of the postulated model includes them. If we were interesteel assiessment of the local
influence on some objective function based on maximum likelihood appreagh haximum likelihood
estimator, likelihood displacement, etc.) we first would consider perturbatite dog-likelihood function
of the postulated model (1) and then obtaining the density of the perturbatse mould be direct.

Following [26], the perturbed modelY, X; Z, 0, w), characterized by a set of perturbatiansan be
regarded as an-dimensional manifold/. Con5|der|ng9( ): R™ — R as the objective function anal(t)

a smooth curve o/, first and second-order terms from a Taylor expansiof(@f)) are used to define
influence measures.

3.1 PERTURBED CORRECTED SCORE AND PERTURBED LOGIKELIHOOD OF THE MODEL
LetU*(0;Y, X,w) be the perturbed corrected score and
00,Z;Y, X,w) =0(0,Z;Y,w) + £(0,Z; X, w) 3)

be the perturbed log-likelihood of the model.



Perturbationw introduced inU* primarily affects the first term on the right hand of (3) since
E[U*(6;Y,X,w)|Y,Z,w] =U(#;Y,Z,w) = %é(@, Z;Y, w),

whereU(0;Y, Z,w) is the perturbed unobserved score.

We consider some commonly used perturbation schemes on correctedusddhen find the perturbed
log-likelihood of the model.

1. Case weights perturbation

The case weights are often the basis for the study of influence. We defing 1 vector of weights
w = (wi,...,w,)” to perturb the contribution of each case to the corrected sEo(@; Y, X),
resulting in the perturbed corrected score

U (6;Y,X,w) = Y wU* (855, %), (4)
j=1

which generalizes the inclusiow( = 1) or the exclusion; = 0) of an observation from the
estimation o), so that this device enables us to learn about the relative importance dfsberation
to the estimation process.

In this casew’ = 1,,, wherel,, is then x 1 vector of ones.

It can be seen easily that (4) can be obtained from
00,Z;Y, X, w) = ijé(ﬂ, z;,y;) + ijf(ﬁ, Zj;X;).
j=1 j=1

2. Perturbation of the observed covariate

Consider perturbing the data for tivth observed covariate, by modifying as
xj(wj) =X;+ wjéi, j=1...n,

whereé; is ank x 1 vector with 1 at the-th position and zeros elsewhere.

The perturbed corrected score can be written as

n
U (0;Y,X,w) = > U (8;y;,%; +w;b,).
j=1
Herew = 0,,, where0,, is then x 1 vector of zeros.
In this case

00,2 Y, X,w) =Y (0,2 +w;biy;) + > U0,2; +w;biix;).

J=1 Jj=1

Note that perturbing the observed covariateasx;(w;) = x; + w;é; on the corrected score is
equivalent to perturbing the unobserved covarigt@sz;(w;) = z; + w;d; on the log-likelihood
sincex;(w;) = z;(w;) + u; and

. 0
E[U*(0;y;,%x;(w;)lyj, 2zj,wj] = U8y, 2j(wj)) = %5(07 zj(w;);y;j)-



3. Perturbation of the response variabje
We perturb the data for theth response variable, leading to

yi(wj) =y +wibi, j=1,...n,

whered; is anr x 1 vector with 1 at the-th position and zeros elsewhere. The perturbed corrected
score is given by

U (0;Y,X,w) = Y _U*(8;y, + w;di, x))
j=1
and the perturbed log-likelihood can be written as

00,Z;Y, X,w) = U(0,25:y; +wibi) + > _ 06, 2,%;),

Jj=1 Jj=1
wherew® = 0,,.
Moreover, some perturbation on model assumptions could be introdwcedstance, to consider an
heterogeneous variance .

3.2 PERTURBATION MANIFOLD

To assess the local influence of a data perturbation, we are primarilystedrin the behavior of the
density of the perturbed mode(Y, X; Z, 8, w) as a function ofs aroundw®. Here the parametefsandZ
are assumed to be known or be fixed at a given value.

Given/(0,7Z;Y,X,w), obtained in Section 3.1, the density of the perturbed mp@€l X; Z, §,w) can
be written as

p(Y,X;Z,0,w) = | [{exp{€(8, 2;; v, %, w;) } (6, 25,w;)] '},
j=1

where
cj(0,z5,w;) = /exp{E(O, z;,Yj, X5, w;) tdy; dx;.

Moreover, we assume thatY, X; Z, 0, w) satisfies the following regularity conditions, considered on page
16 of [1]:

1. Allthep(Y,X;Z,6,w)’s have a common support, so thdlY, X; Z, §,w) > 0 for all (Y, X) in the
support.

2. Let/(w;Y,X,Z,0) =1logp(Y,X;Z,0,w). For every fixedw, n functions in(Y, X)

0 .
ai(g}jﬁ(ﬂ(),-Y—,:)(,Z70)7 ]—1,...,7’1

are linearly independent.

N, :
3. The moments of random vanablg&ﬁ(w; Y, X, Z,0) exist up to necessary orders.
wj

4. The partial derivative% and the integration with respect to the Lebesgue measuam always be
J
interchanged as

9 )
(%j/f(MY,X,Z,O) dA—/awjf(w,Y,X,Z,e) dA

for any functionf (w; Y, X, Z, ) that we treat in the following.



The perturbed model
M={p(Y,X;Z,0,w): wecQ}

can be regarded as andimensional manifold (see [1]).

When a coordinate systemis given,d; = 0/0w;, (j = 1,...,n) are the natural basis of the tangent
spacel, at pointw of the manifoldM, associated with the coordinate system. But, there is a more familiar
representation of the tangent space in the case of the manifaifia statistical model, that iﬁjgl), the so
called 1-representation of the tangent spac&/aitw, which is spanned by functionso;/(w; Y, X, Z,0).

We can identifyT,,, with TV considering that

h=> 1o, eT, < h(Y,X)=> WolwY,X,Z0) cT
j=1 j=1

(see [1]).

3.2.1 Metric tensor and appropriate perturbation

The inner product of two basis operatésandod; is
gij (w) = Ew [315((4)7 Y, X, Z, 9)83[(&’; Y, X, Z, 9)],

where E, denotes the expectation taken with respegi(t¥, X; Z, 6, w). Then? quantitiesg;;(w), i,j =
1...n, form the metric tensor ([26]).

The metric matrixG(w) = (g;;(w)) is the Fisher information matrix with respect to the perturbation
vectorw. The elemeny;; (w) indicates the amount of perturbation introduced bytte component of.
The elementg;;(w), 7 # j represent the association between different componeanis of

The authors of [26] define, based on these observations, an aigpeoperturbation as that satisfying
that G(w°) = diag(g11(w®),. .., gnn(w?)). This condition avoids any redundant componentsvadnd
determines the ortogonality between the different components tf ensure that we can easily pinpoint
the cause of a large effect. Moreover, we can always choose aerwlmtion vectow such thatG(w)
evaluated ab” equalscl,,, wherec > 0.

(M, G) defines a Riemannian manifold, called a statistical perturbation manifold.

3.2.2 Affine connection

If we want to talk about the straightness (and hence curvature) of aterooovew(t) in M, an affine
connection must be introduced. The metric tensor defines the Levi-Civitlaection by its Christoffel
symbols

i) = 5(0i936(w) + Djgix(@) — Dugis @),

It has the property that the geodesics of the Levi-Civita connectionuakes of minimum length among
those paths that lie in the manifold.

Of course there are connections which are not metrics or derivedfreimcs in this way. [26] introduce
a covariant 3-tensor, symmetric in all indices, and a related family of afbineectiond™* for anya € R
are defined therefrom. We restrict attention to the Levi-Civita connegtign= 0).

4 |INFLUENCE MEASURES FOR THE CORRECTED SCORE ESTIMATOR

Let é(w): R? — R be a particular component of the perturbed corrected score esti@(atg)rand
w(t) the geodesic, which is unique and defined in an interval containing 0 satwth) = w° and
dw(t)/dtli—o = h € T, 0. [14] state a covariant version of the Taylor theorem, which has the tayan
that each term in the series is a tensor, thus invariant to reparametrizatiike,the standard Taylor’s series
expansion, as follows

Ow(t) =0(w’) +tVih+ %chTﬁéh + o(t?),



with V,; = ( ) andH H( 0); where thei, j)-th element ofHe( )IS given by

[Hj).g) = 0060w Zg‘” Tjs(w)0,0(w),

whereg®” (w) is the(s, r)-th element of7(w)~!. The matrixH,, . is called the covariant Hessian @fiw).

0(w)
First and second derivatives éfw(t)) on M, att = 0 can be used to construct influence measures (see
[26]).
A first order (FI) influence measure in the directiore T, o is given by

h'V,;VIh
Flip = —hrem ©)
whereG = G (u°).
A second order (SI) influence measure in the direction 7, o is defined as
h’ Hzh

[26] showed that itw is an appropriate perturbation akt) = 0, thenSIe , coincides with the normal
curvature defined in [6] in the directidm, which would be calculated in this case from the surface formed
by the corrected score estimator. Moreoﬁg,}h is scale invariant even wh@ie # 0, whereas the normal
curvature of Cook is not ([8]).

Maximum values of Fé’h and Sb}h guantify the degree of local influencewto a statistical model, while
the associated directions can be used for identifying influential obsemgatisiso, the absolute values of
FI; = FI, andSIJ = Sl; ., whereej is ann x 1 vector with j-th element one and zero otherwise, for
ji=1,. n can be used for this purpose.\if; # 0, thenFI, i andSl, o are used together.

5 APPLICATION TO THE SIMPLE LINEAR REGRESSION MODEL

We consider the simple linear functional measurement error model to illustat®ltalculate geomet-
rical quantities for a perturbation manifold. We check whether the petiarhais appropriate and calculate
influence measures Fl and Sl associated with the corrected score estimafmarticular component &,
to assess local influence of the perturbation.

The simple linear functional measurement error model can be repredgntieel equations

yi = o+ Bz +e¢j,

r; = zj+uj, j=1...n, (7
with e; ~ N(0,02) independent ofi; ~ N (0, 02). To make the model identifiable, the varianggis taken
as known.

In this cased = («, 3, 02)7 is the structural parameter vector dfid= (21, ..., 2,)" is the correspond-

ing vector of incidental parameters.
The log-likelihood of the model is given by

n

D O zygay) =Y U0 zy) + Y 0. z55a;),
j=1

Jj=1 J=1

where

1 1
00, z5;y) = D) log(2m) — 5 logo? — —a— ﬁzj)2

20

RN
—
&

corresponds to the unobserved log-likelihood and

1 1 1
00, zj;x5) = —5 log(2m) — §1og UZ — ﬁ(% — zj)2
u



incorporates the relation betweepandz;.
The corrected score function can be written ([10]) as

*(0;Y,X) }:U Y T,

where
1 yj —a— Bz
U*(0;y;,x;) = -2 (yy o — Brj)r; + 503
¢\ —3+ g2llyy — a = Bay)? - ol
The solution to the equatiod™(8; Y, X) = 0 leads to the estimators
O S~ Sy T R
a:y—ﬁq}’ /8:7 and O'E:Syy_ﬁsmy7

Spz — 02

2

with S, > o2 and S,, > SSI 7, wherez = lzgzla:j, g = %Z?Zlyj, Sz = 2370 (-
z)%, Syy = iZ;:ﬁ% — )% and S:vy = izjzl(xj —Z)(y; — 9)-
The estimators, 5 and4? differ from the maximum likelihood estimators, which are inconsistent.
For brevity we include the calculations only for case weights perturbatioense, so that

U (0;Y, X, w) = Y wjU" (095, z;), withw® = 1,,. (8)

SolvingU*(0; Y, X,w) = 0, we obtain the perturbed corrected score estimators

A~

A — A _ S:v w ~
dw) =Y — fW)Zw, Bw)= vy_aa and 62(w) = Syyw — B(W) Sy,
wherez,, = Z;’L:I YiwTi, Yo = Z?:l 'Yjwyja Sraw = Zn 1'7jw($j - jw)Qa Syyw = Z;’L:I 'Yjw(yj -
Jo)? andSyy, = > Ve — %) (Y — Yo)y With vj = wi/ (321 wy).
The perturbed log-likelihood of the model can be written as

00,Z;Y,X,w) = Zw]{— log(2moy0c) —

1
5z Wi —a = B2)" = o5 (@ — %)}
] 1 € Uu

20

Thus, the density of the perturbed model is given by

n

p(Y,X;Z,0,w) = [[{
1

Then
lw;Y,X,Z,0) =logp(Y,X;Z,0,w)

a 1
= Z{— log(2moy,0.) + logw; — wj[ﬁ(yj —a—fB2)*+

o z 20

After some calculations, we have

1 1 .
gij(w) = E(SU and Fijk(w) = _Eéijéikv 1,7, k=1...n

) )

Thus,G(w) = I,, and the perturbation in (8) is an appropriate one.



We consider the corrected score estimatan) as our objective function. After some algebraic deriva-
tions, first and second derivatives @fw) atw’ = 1,, are obtained as follows

_OBWw) 1 -
V6= Tow  n(Sas —o7) (e @y~ e

u

and o o
0°f(w’) T
H, =279 ) Ay a
B OwiwT +a5
with )
A= —m{(sm —02)(dy — fd,)d] + (d, © dy — fsy)s; },
whered, = (v1 — Z,..., 2, —2)T, dy = (1 =¥, Yn — 9)T, 8z =d, ®d, — 021, and © denotes

the element-wise product.
Direct calculations leads to the covariant Hessian matrix

flﬁ = Hﬁ + diag(VB),

wherediag(vﬁ) represents the diagonal matrix with the elements of the v&:ﬁdn the diagonal.

Then, first and second-order influence measdfég’h and SIB,h’ can be calculated from formulas (5)
and (6), respectively.

Perturbations of the observed covariable and response variable @aralyzed similarly. They are also
appropriate and in these cadgs,(w) = 0 for all i, j, k = 1...n, so the straight linex(t) = w° + this a
geodesic and?[; = H,.

5.1 NUMERICAL ILLUSTRATION

To illustrate the computation of influence measures, we reanalyze the datnsetered in [11]. The
data given in Table 1 are measurement of serum kanamycin levels in blogdesadrawn from twenty
babies. One of the measurements was obtained by a heelstick mejhale( other using an umbilical
catheter ). Determinations of serum kanamycin contain measurement error in both asetho[11] it
is assumed a structural model (that is, witl random variable) under the assumptign= o2, to assure
identifiability. Maximum likelihood estimates are calculated and the influence funistiesed for detection
of influential observations. For the purpose of the example, here wenasthat the functional model (7)
holds, witha? known for making the model identifiable. In [11], the estimates from the aisalysre
& = —1.16, 3 = 1.07 andé2 = 62 = 4.60. We chooser? = 4.40, as the known value of the variance,
with the aim of making both analysis comparable.

Table 1: Serum kanamycin levels in blood samples

Baby Heelstick Catheter Baby Heelstick Catheter
1 23.0 25.2 11 26.4 24.8
2 33.2 26.0 12 21.8 26.8
3 16.6 16.3 13 14.9 154
4 26.3 27.2 14 17.4 14.9
5 20.0 23.2 15 20.0 18.1
6 20.0 18.1 16 13.2 16.3
7 20.6 22.2 17 28.4 31.3
8 18.9 17.2 18 25.9 31.2
9 17.8 18.8 19 18.9 18.0
10 20.0 16.4 20 13.8 15.6

Under these assumptions the estimates from the analysis by the correceedmmmach are

~

a=-119, =107, &2=4.34



The slope and intercept estimates are similar to those obtained by the ana[{4ik of

In the perturbation of case weights scheme the maximum absolute valﬂ%choandSIB , are 0.074011
and 0.45629, respectively.

Figure 1 gives the index plot ¢F1;| and|SI;|, j = 1, ... 20. First and second order influence measures
reveal that case 2 is the most influential on the corrected score estimatesddpie. This result coincides
with that obtained by [11].
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Figure 1: Index plot of (a){FI;| and (b):|SI;|

6 CONCLUSIONS

We have defined a Riemannian manifold, called the perturbation manifolds$essment of local in-
fluence on corrected score estimators for functional measurementaortels. A perturbation vector is
introduced on the corrected score function (which is independent dficidental parameters) and then the
density of the corresponding perturbed model (including structurairexiental parameters) is found. The
perturbed model, as a function of the perturbation vector, defines theatthnlthe metric tensor permits
to select an appropriate perturbation. First and second-order infumeasures are defined based on a
covariant version of the Taylor’s theorem.

We consider the simple linear functional measurement error model with ahe ofriances known, to
illustrate the calculation of the geometrical quantities of interest in the casetpeighrbation scheme. We
selected as our objective function the corrected score estimator of treatdpobtained simple formulae
for first and second-order influence measures. The influencesimaly the corrected score estimators of
the others parameters in the model can be performed separately.

The calculations of influence measures based on perturbation manifoldsercomplex measurement
error models, both functional and structural, by using different estimapproaches merits further re-
search. Relationships between the influence measures here defing@rimituence diagnostics in mea-
surement error models could be also studied.
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