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A REMARK ON QUANTUM MOMENTUM MAPS AND CLASSICAL
ANOMALIES

M. E. GARCIA AND M. ZUCCALLI

ABSTRACT. In order to answer the proposal given by P. Xu in [9], the existence of a quan-
tum momentum map based on the existence of a classical momentum map is studied by O.
Kravchenko in [4] and Müller-Bahns and Neumaier in [6]. In both papers only Hamiltonian
actions are considered.

In these notes, we analyze the existence of a quantum momentum map based on the
existence of a classical momentum map defined from a weakly Hamiltonian action. Some
classical anomalies and quantum momentum maps are related.

1. INTRODUCTION

In the last years, many papers have considered the relation between classical and quantum
symmetries in mechanical systems. The fundamental role that the momentum map plays
in the analysis of classical mechanical systems with symmetries is well known. In the
framework of deformation quantization, the quantum momentum map (q.m.m.) plays the
role of a quantum analogous to the classical momentum map (c.m.m.).

In an interesting work ([9]), Xu has proved that a q.m.m. always recovers an Ad∗-
equivariant c.m.m. He also raised the question whether the existence of a c.m.m. guarantees
the existence of a q.m.m. that recovers it at the classical limit.

O. Kravchenko ([4]) proposed a definition of a q.m.m. which given rise a positive answer
to the question posed by Xu. This definition allows consider cocycles that can be appear in
the process of deformation quantization.

On the other hand, by considering a slightly different definition of q.m.m., Müller-Bahns
and Neumaier ([6]) have given a negative answer to this question and have established
necessary and sufficient conditions so that the existence of a c.m.m. implies the existence
of a q.m.m. associated.

In these works only Hamiltonian actions, which define Ad∗-equivariant classical momen-
tum maps, are considered. The aim of these notes is to adapt this kind of ideas in order to
include weakly Hamiltonian actions which give rise to non Ad∗-equivariant classical mo-
mentum maps. A notion of a q.m.m. which allows us to recover a non Ad∗-equivariant
c.m.m. at the classical limit is considered.

When a classical system is quantized can be appear anomalous terms usually called quan-
tum anomaly. These anomalies are seen as a quantum effect. An example of this fact is to
quantize conserved currents of a Lagrangian which close the algebra of classical observable
but give rise to central terms on the commutator of quantum observable. These central terms
are known as Schwinger terms and have an important physical meaning (see, for example,
[8]).

The notion of classical anomaly has been introduced to describe a classical counterpart of
a quantum anomaly ([7]). A classical anomaly occurs, for example, when a system admits a
weakly Hamiltonian action ([4]). In this case, the Poisson bracket shows this anomaly which
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appears at classical level and it is conserved by quantizing. Our interest is to consider this
kind of classical anomalies and its quantum counterpart in the framework of deformation
quantization.

These notes are organized as follows. In section 2 the definitions of Ad∗-equivariant and
non Ad∗-equivariant c.m.m. are recalled. In section 3 a very short review of deformation
quantization is given. Also the definition of q.m.m. and some of the results proved in [6]
and [4] are recalled.

In section 4 another notion of q.m.m. is considered. Given a non Ad∗-equivariant c.m.m.,
two different ways to consider it quantum counterpart are analyzed. Also the relation be-
tween quantum momentum maps and classical and quantum anomalies is considered.

2. CLASSICAL MOMENTUM MAPS

The momentum map plays a fundamental role in the analysis of classical mechanical
systems with symmetries. In this section, we recall its definition and some of its important
properties (for more details see, for example, [1] or [5]).

Let us consider a symplectic manifold (M,ω) and the linear space of differentiable func-
tions on M with values in R, C∞(M). Let X f be the Hamiltonian vector field of f defined by
the condition iX f ω = d f , where iX is the contraction of the 2-form ω by X and d is the exte-
rior differential operator on M. It is well known that C∞(M) admits a canonical structure of
Lie algebra associated to the form ω given by the Poisson bracket defined as follows. That
is, { f ,g} = ω(X f ,Xg) if f and g ∈ C∞(M). The adjoint representation ad∞ of C∞(M) on
itself is given by (ad∞) f (·) = { f , · }.

We consider a symplectic left action of a Lie group G on M. That is, there exists a
differential mapping φ : G×M→M such that φ ∗g ω = ω,∀g ∈G, where φ ∗g is the pull-back
of the diffeomorphism φg : M→M given by φg(m) = φ(g,m). If g is the Lie algebra of the
group G, Xξ denotes the infinitesimal generator associated to the action φ corresponding
to ξ ∈ g, and g∗ denotes the dual space of g. An action of G on M canonically induces
a representation ρ of the Lie algebra g on C∞(M) defined as ρ(ξ )( f ) =−LXξ

f , where L
denotes the Lie derivative. Under such action, C∞(M) becomes a g-module.

A differential function J0 : M→ g∗ is a classical momentum map for the action φ of G
on M if 〈J0(m),ξ 〉 = J0(ξ )(m) for all m ∈ M and ξ ∈ g, where J0(ξ ) ∈ C∞(M) satisfies
that dJ0(ξ ) = iXξ

ω for all ξ ∈ g. Thus, a momentum map can be considered as an appli-
cation J0 : g→ C∞(M) such that XJ0(ξ ) = Xξ for all ξ ∈ g. It is clear that {J0(ξ ), f} =
ω(Xξ ,X f ) = ρ(ξ )( f ) = (ad∞)J0(ξ )( f )} for all f ∈C∞(M). A c.m.m. J0 is Ad∗-equivariant
if J0(φg(m)) =Ad∗g−1J0(m) for all g∈G, where Ad∗ denotes the coadjoint action of G on g∗.

In order to consider the cohomology of g with coefficients in C∞(M) and other coho-
mologies derived from it, we recall the definition of the cohomology of g with coefficients
in a g-module V . Given a linear space V and ψ a representation of g in V , let us consider
Ck(g,V ) the space of alternate k-multilineal maps α on g with values in V . The Chevalley–
Eilenberg coboundary operator associated δψ : Ck(g,V )→Ck+1(g,V ) for all k ∈N is given
by

δψ(α)(ξ1,ξ2, . . . ,ξk+1) =
k+1

∑
i=0

(−1)i+1
ψ(ξi)

(
α(ξ1,ξ2, . . . , ξ̂i, . . . ,ξk+1)

)
+∑

i< j
α

(
[ξi,ξ j],ξ1, . . . , ξ̂i, . . . , ξ̂ j, . . . ,ξk+1

)
where the symbol ˆ means that the variable under it has been deleted.
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An element α ∈Ck(g,V ) is a k-cocycle if δψ(α) = 0, and it is a k-coboundary if there
exists an element β ∈ Ck−1(g,V ) such that δψ(β ) = α . If Zk

ψ(g,V ) is the space of the k-
cocycles and Bk

ψ(g,V ) is the space of the k-coboundaries, Hk
ψ(g,V ) = Zk

ψ(g,V ) / Bk
ψ(g,V )

is the k-group of the cohomology of g with coefficients in V . It is well know that the
extensions of g by V are characterized by the group C2(g,V ).

A G-action on M is called Hamiltonian if there exists a c.m.m. J0 ∈C1(g,C∞(M)) such
that is a Lie algebra homomorphism. That is, J0([ξ ,η ]) = {J0(ξ ),J0(η)} for all ξ ,η ∈ g.
A straightforward computation shows that if J0 is Ad∗-equivariant then J0 is a Lie algebra
homomorphism.

A G-action on M is called weakly Hamiltonian if there exists a c.m.m. J0 that is not a
Lie algebra homomorphism. Given a weakly Hamiltonian G-action on M the application
σ : G→ R given by σ(g) = J0(φg(m))−Ad∗g(J0(m)) for some m ∈M measures the lack of
Ad∗-equivariance of the momentum J0. It is easy to check that this function is a 1-cocycle
on G that takes values in R. In a canonical way, this 1-cocycle gives rise to a 2-cocycle
on g with values in R, Σ : g× g→ R given by Σ(ξ ,η) = 〈dσ̂η(e),ξ 〉, where σ̂η : G→ R
is defined as σ̂η(g) = 〈σ(g),η〉. It is easy to see that Σ is a 2-cocycle on g with values
in R associated to the trivial action of g on R and Σ(ξ ,η) = {J0(ξ ),J0(η)}−J0([ξ ,η ]).
Thus, a non Ad∗-equivariant c.m.m. J0 canonically defines the Lie algebra g̃ = g⊕R,
the central extension of g associated to the 2-cocycle Σ. Its Lie commutator is given by
[(ξ ,a),(η ,b)] = ([ξ ,η ],Σ(ξ ,η)) for all ξ ,η ∈ g and a,b ∈ R. This central extension will
be considered in Section 4.

3. DEFORMATION QUANTIZATION AND QUANTUM MOMENTUM MAPS

3.1. Deformation quantization. In this subsection we recall some basic aspects of defor-
mation quantization ([2], [6], [9]).

Let us consider a symplectic manifold (M,ω) and {·, ·} the Lie algebra structure on
C∞(M) canonically associated to ω . Given the Plank constant h̄, the set C∞(M)[[h̄]] is the
vector space of formal power series in the parameter h̄ with coefficients in C∞(M). That is,

C∞(M)[[h̄]] =

{
∞

∑
r=0

frh̄r : fr ∈C∞(M),∀ r ≥ 0

}
.

In general, for any vector space V ,

V [[h̄]] =

{
∞

∑
r=0

vrh̄r : vr ∈V,∀ r ≥ 0

}
.

A deformation quantization of C∞(M), or a star product ?, is an associative algebra
structure on C∞(M)[[h̄]] of the form

f ?g = f g− ih̄
2
{ f ,g}+

∞

∑
r=2

Cr( f ,g) h̄r, ∀ f and g ∈C∞(M)[[h̄]],

where each Cr(·, ·) is a bidifferential operator verifies that Cr( f ,g) = (−1)rCr(g, f ) and
Cr(1, f ) =Cr( f ,1), for all f and g ∈C∞(M)[[h̄]].

A star product ? on C∞(M)[[h̄]] gives it a Lie algebra structure by means of the bracket
[ f ,g]? = f ? g− g ? f . The adjoint representation (ad?) of C∞(M)[[h̄]] on itself is given by
(ad?)γ(·) = [γ, ·]?. The existence proof of star products on a general symplectic manifold
was first obtained by Wilde and Lecomte [3] using a homological argument.

We will consider, as in [6], a generalized Fedosov’s ? product on a symplectic manifold
(M,ω) stemming from a Weyl product ◦ and a triad (∇,Ω,s) constituted by a flat torsion
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free symplectic connection ∇ on M, a 2-form formal series Ω on M, and a certain formal
series s of symmetric contravariant tensor fields on M without terms of symmetric degree 1.

Given a Lie group G that symplectically acts in (M,ω), the action ρ of g on C∞(M)
defined in section 2 can be naturally extended to an action ρc of g on C∞(M)[[h̄]] in the
following way:

ρc(ξ )

(
∑
r≥0

frh̄r

)
=−∑

r≥0
(LXξ

fr) h̄r.

Thus, C∞(M)[[h̄]] turns in a g-module. We shall consider the cohomology of g with coeffi-
cients in C∞(M)[[h̄]] and its associated coboundary operator δρc .

A star product ? is called g-invariant if ρc(ξ )( f ? g) = (ρc(ξ )( f ) ? g)+ ( f ?ρc(ξ )(g)),
for all f ,g ∈C∞(M)[[h̄]] and for all ξ ∈ g. In the next sections these star products will be
considered.

3.2. Quantum momentum maps. In this subsection we recall the definitions of q.m.m.
considered in [6] and [4]. In addition, we present some results proven in these papers.

Definition 1. Let us consider a Hamiltonian G-action on M and a g-invariant star prod-
uct ?. According to [6], J ∈C1(g,C∞(M))[[h̄]] is a quantum Hamiltonian for the action ρc
if

ρc(ξ )(·) =
1
h̄
(ad?)J(ξ )(·) =

1
h̄
[J(ξ ), · ]?, ∀ ξ ∈ g. (1)

A quantum Hamiltonian J is a q.m.m. if J : g −→ (C∞(M)[[h̄]], 1
h̄ [·, ·]?) is a Lie algebra

homomorphism. That is,
1
h̄
(J(ξ )?J(η)−J(η)?J(ξ )) = J([ξ ,η ]), ∀ ξ and η ∈ g. (2)

Note 1. Notice that J can be written as J = J0 + J+, where J0 ∈ C1(g,C∞(M)) and J+ ∈
h̄C1(g,C∞(M))[[h̄]]. It is very simple to see that the zeroth order in h̄ of (1) is equivalent
to J0 being a c.m.m. for the action ρ , and that the zeroth order in h̄ of (2) just means
Ad∗-equivariance of this c.m.m. Thus, it is clear that a q.m.m. always gives rise to an
Ad∗-equivariant c.m.m.

A g-invariant Fedosov star product ? for (M,ω) obtained from (∇,Ω,s) admits a quantum
Hamiltonian if and only if there is an element J ∈ C1(g,C∞(M))[[h̄]] such that dJ(ξ ) =
iXξ

(ω +Ω) for all ξ ∈ g.
If J is a quantum Hamiltonian for the a g-invariant Fedosov star product ?, then λ ∈

C2(g,C∞(M))[[h̄]], defined by

λ (ξ ,η) =
1
h̄
(J(ξ )?J(η)−J(η)?J(ξ ))−J([ξ ,η ]),

is an element of Z2(g,R)[[h̄]] explicitly given by λ (ξ ,η) = (ω +Ω)(Xξ ,Xη)−J([ξ ,η ]).
Given J0 an Ad∗-equivariant c.m.m., there exists J ∈ (g,C∞(M))[[h̄]] a q.m.m. that re-

covers J0 if and only if there exists J+ ∈ h̄.C1(g,C∞(M))[[h̄]] such that iXξ
Ω = d J+(ξ ) and

Ω(Xξ ,Xη) = (δρcJ+)(ξ ,η) for all ξ ,η ∈ g.
Let us notice that this equivalence gives rise, in general, a negative answer to the question

given by Xu, and this answer is positive if and only if the 2-cocycle Ω(Xξ ,Xη) is cohomo-
logically trivial.

On the other hand, in [4] O. Kravchenko proposed a slightly different definition of
q.m.m. by considering the projective representation of g on C∞(M)[[h̄]] associated to the 2-
cocycle λ . A q.m.m. is a Lie algebra map µLie : g→ InnC∞(M)[[h̄]], where InnC∞(M)[[h̄]]
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is the inner automorphisms of C∞(M)[[h̄]], which inherit the Lie algebra structure from
C∞(M)[[h̄]]. In particular, limh̄→0 µLie(ξ )( f ) = {J(ξ ), f} for all ξ ∈ g and f ∈C∞(M).

Thus, if there exists J+ ∈ h̄.C1(g,C∞(M))[[h̄]] such that iXξ
Ω = d J+(ξ ) for all ξ ∈ g,

there exists a q.m.m. µLie given by µLie(ξ )( f ) = [µ(ξ ), f ]∗, where µ = J0 +J+. This fact
gives rise to a positive answer to the question posed in [9].

Note 2. It is clear that according to [6], there exists a q.m.m. from a c.m.m. if and only if
deformation quantization does not give rise to an anomaly; that is, the cocycle λ is coho-
mologically trivial. According to [4] there exists a q.m.m. from a c.m.m. even if deformation
quantization gives rise to anomalous terms. It is clear that classical anomalies are not
considered in these works.

4. QUANTUM COUNTERPART OF A NON Ad∗-EQUIVARIANT CLASSICAL MOMENTUM
MAPS

There are many classical mechanical systems with symmetries that give rise to classi-
cal anomalies. A simple example is Rn acting by translations on Rn with the canonical
symplectic structure. Another non Ad∗-equivariant momentum map appear if we consider
lift cotangent actions with symplectic forms are canonical modified by the addition of a
magnetic term.

Also a conserved current of a Lagrangian can be seen as a non Ad∗-equivariant c.m.m.
that gives rise to a Lie algebra central extension. The affine Kac–Moody algebra that appears
when compute the equal time commutator for a 2-dimensional theory, is a central extension
of a loop algebra. The Virasoro algebra, that plays a very important role in 2-dimensional
conformal theories, is a central extension of the Lie algebra of the group of diffeomorphisms
of S1. In both cases, the classical anomaly is given by a non Ad∗-equivariant c.m.m.

In order to treat the quantum counterpart of a classical anomaly defined from a non Ad∗-
equivariant classical momentum map we need to define the quantum counterpart of a non
Ad∗-equivariant c.m.m.

4.1. Ad∗-equivariant and anomalous quantum momentum maps. As we said in Note 1,
the condition (1) that defines a quantum Hamiltonian on Definition 1 describes the charac-
terization of the quantum counterpart of a c.m.m. Meanwhile, the condition (2) that defines
a quantum momentum map on the same definition, corresponds to the property of Ad∗-
equivariance of a c.m.m. For this simple reason, analogously to the classical case, we
propose that a quantum Hamiltonian should be called q.m.m. and a quantum momentum
map should be called Ad∗-equivariant q.m.m.

In this framework, the following definition generalizes Definition 1.

Definition 2. Given a g-invariant star product ?, J ∈C1(g,C∞(M))[[h̄]] is a q.m.m. of the
action ρc if

ρc(ξ )(·) =
1
h̄
(ad?)J(ξ )(·) =

1
h̄
[J(ξ ), · ]?, ∀ ξ ∈ g. (3)

If J is not a Lie algebra homomorphism, J is called non Ad∗-equivariant or anomalous
q.m.m.

Let us notice that a non Ad∗-equivariant c.m.m. can not be considered as the classical
limit of an Ad∗-equivariant q.m.m. but can be recovered from an anomalous q.m.m.

Given a non Ad∗-equivariant c.m.m., according to the proven results in [6] it is immediate
to characterize the existence of an anomalous q.m.m. that recovers J0.
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Proposition 1. Given a non Ad∗-equivariant c.m.m. J0, there exists J = J0+J+ an anoma-
lous q.m.m. if and only if there exists J+ ∈ h̄C1(g,C∞(M))[[h̄]] such that iXξ

Ω = d J+(ξ ).

In this way, we arrive at the same conclusion that O. Kravkencho by considering non
necessarily Ad∗-equivariant classical momentum maps.

4.2. Ad∗-equivariant quantum momentum map associated to the canonically extended
classical momentum map. As we recall in Section 2, in the case of a weakly Hamiltonian
action with a non Ad∗-equivariant momentum map J0, there exists a canonical central exten-
sion of the Lie algebra g given by the 2-cocycle Σ that measures the non Ad∗-equivariance
of the momentum map.

We assume that the extension g̃ of the Lie algebra g corresponds to an extension G̃ of the
Lie group G.

Let us consider the trivially extended action of G̃ on M, φ̃ : G̃×M → M defined as
φ̃(g,A)(m) = φg(m) for all (g,A) ∈ G̃ and m ∈M. Then the infinitesimal generator X̃(ξ ,a) as-
sociated to (ξ ,a)∈ g̃ coincides with the infinitesimal generator Xξ for all ξ ∈ g. In a canon-
ical way, we can define a representation ρ̃ : g̃×C∞(M)→ C∞(M) given by ρ̃(ξ ,a)( f ) =
−LX̃(ξ ,a)

f , and its associated coboundary operator δρ̃ .
Given a non Ad∗-equivariant c.m.m. J0, we can define a momentum map that results

equivariant with respect to an extended coadjoint action of g̃∗ defined for all (α,x) ∈ g̃∗ as
Ãd
∗
(g,A)(α,x) = (Ad∗gα +σ(g),x).
The application J̃0 : g̃→C∞(M) defined as J̃0(ξ ,a)(m) = J0(ξ )(m)+a is called canon-

ically extended c.m.m. associated to the action φ̃ of G̃ on M.
Now, we will study the existence of an Ad∗-equivariant q.m.m. associated to J̃0. In the

first place, let us notice that the representation ρ̃ of g̃ on C∞(M) can be canonically extended
to the space C∞(M)[[h̄]] as follows. Let ρ̃c : g̃×C∞(M)[[h̄]]→ C∞(M)[[h̄]] be given by
ρ̃c(ξ ,a)(∑

r≥0
frh̄r) = ∑

r≥0
ρ̃(ξ ,a)( fr)h̄r = ∑

r≥0
ρ(ξ )( fr)h̄r, and δρ̃c

its associated coboundary

operator. It is easy to verify that is equivalent to consider g-invariant or g̃-invariant Fedosov
star products.

Lemma 1. A Fedosov star product ? is g̃-invariant if and only if it is a g-invariant Fedosov
star product.

Proof. A Fedosov star product ? is g̃-invariant if and only if

ρ̃c(ξ ,a)( f ?g) = (ρ̃c(ξ ,a)( f ))?g+ f ? (ρ̃c(ξ ,a)(g)).

Since ρ̃c(ξ ,a)( f ) =−LX̃(ξ ,a)
f =−LXξ

f = ρc(ξ )( f ), then the above condition is equiva-
lent to ρ(ξ )( f ?g) = (ρ(ξ )( f )?g)+( f ?ρ(ξ )(g)). That is, ? is g-invariant. �

Now, let us consider a g-invariant Fedosov star product ? defined from (∇,Ω,s) as has
been described in Section 3. According to [4] we will suppose that there exists J̃+ ∈
h̄ C1(g̃,C∞(M))[[h̄]] such that iX̃(ξ ,a)

Ω = dJ̃+(ξ ,a). Then, we can consider the q.m.m.

µ̃Lie : g̃→ InnC∞(M)[[h̄]] given by µ̃Lie((ξ ,a), f ) = [µ̃((ξ ,a)), f ]∗, where µ̃ = J̃0 + J̃+.
A direct computation shows that J0 can be recovered as the classical limit of the restric-

tion of µ̃Lie to g.

Proposition 2. µ̆ = µ̃|g⊕{0} is an anomalous q.m.m. that recovers the non Ad∗-equivariant
c.m.m. J0.
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Proof. It is clear that µ̆ is a q.m.m., because

ρc(ξ )(·) = ρ̃c(ξ ,0)(·) =
1
h̄
[µ̃(ξ ,0), · ]? =

1
h̄
[µ̆(ξ ), · ]?, for all ξ ∈ g.

Also we can see that µ̆ is not a Lie algebra homomorphism,

[µ̆(ξ ), µ̆(η)]? = [µ̃(ξ ,0), µ̃(η ,0)]? = µ̃([(ξ ,0),(η ,0)]) = µ̃([(ξ ,η)],Σ(ξ ,η)),

and µ̆([ξ ,η ]) = µ̃([ξ ,η ],0). Then µ̆ is an anomalous q.m.m.
On the other hand, µ̆(ξ ) = µ̃(ξ ,0) = J̃0(ξ ,0)+ J̃+(ξ ,0) = J0(ξ )+ J̃+(ξ ,0). Then it is

clear that µ̆ recovers J0 at the classical limit. �

Note 3. By considering the definition of q.m.m. given in [6], and assuming the existence
of J̃+ ∈ h̄ C1(g̃,C∞(M))[[h̄]] such that iX̃(ξ ,a)

Ω = dJ̃+(ξ ,a), there exists an Ad∗-equivariant

q.m.m. for ρ̃c given by J̃ = J̃0 + J̃+ : g̃→C∞(M)[[h̄]] if and only if

Ω

(
X̃(ξ ,a), X̃(η ,b)

)
=
(

δρ̃c
J̃+
)
((ξ ,a),(η ,b))

.

4.3. Canonical extended anomalous quantum momentum map. Given J0 a non Ad∗-
equivariant c.m.m. let us assume that there exists J+ such that J+ ∈ h̄C1(g,C∞(M))[[h̄]] and
iXξ

Ω = dJ+(ξ ).

We analyze the 2-cocycle λ : g× g → R[[h̄]] given by λ (ξ ,η) =
1
h̄
[J(ξ ),J(η)]? −

J([ξ ,η ]), where J = J0 +J+.
It is clear that R[[h̄]] becomes a g-module by the trivial action. Thus, we can consider the

central extension ĝ of g by R[[h̄]] associated to the 2-cocycle λ .
Thus, ĝ = g⊕R[[h̄]] and [(ξ ,∑

r≥0
xrh̄r),(η ,∑

r≥0
yrh̄r)] = ([ξ ,η ],λ (ξ ,η)), where ξ ,η ∈ g

and ∑
r≥0

xrh̄r, ∑
r≥0

yrh̄r ∈R[[h̄]]. The Lie algebra ĝ acts trivially in the extension component on

C∞(M) and this action is canonically extended on C∞(M)[[h̄]]. That is, ρ̂c : ĝ×C∞(M)[[h̄]]→
C∞(M)[[h̄]] is given by ρ̂c(ξ ,∑

r≥0
xr h̄r)(∑

r≥0
fr h̄r) =−∑

r≥0
(LXξ

fr)h̄r.

We will define an Ad∗-equivariant quantum momentum map that canonically extends J.
Let us consider the application Ĵ : ĝ→C∞(M)[[h̄]] given by

Ĵ(ξ ,∑
r≥0

xrh̄r) = J(ξ )+ ∑
r≥0

xrh̄r.

In the first place, Ĵ is a q.m.m. for the quantum action ρ̂c,

ρ̂c(ξ ,∑
r≥0

xrh̄r)(·) = 1
h̄
[Ĵ(ξ ), · ]?, ∀ (ξ ,∑

r≥0
xrh̄r) ∈ ĝ.

In order to see that Ĵ is a Lie algebra homomorphism we will recall the following basic
property.

Lemma 2. If f ∈ R[[h̄]] then [ f ,g]? = 0, for all g ∈C∞(M)[[h̄]].

Proof. Let f = ∑
r≥0

arh̄r ∈ R[[h̄]] and g = ∑
r≥0

grh̄r ∈ C∞(M)[[h̄]], with ar ∈ R and gr ∈

C∞(M) for all r ≥ 0. Then,

[ f ,g]? =

[
∑
r≥0

arh̄r,∑
r≥0

grh̄r

]
?

= ∑
r≥0

( ∑
i+ j=r

[ai,gi]?)h̄r = 0,
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where the last equality is fulfilled because [a,g]? = 0 for all a ∈ R and g ∈C∞(M). �

Proposition 3. Ĵ : ĝ−→ (C∞(M)[[h̄]], 1
h̄ [·, ·]?) is a Lie algebra homomorphism.

Proof. By definition of Ĵ and the bracket in ĝ,

Ĵ([(ξ ,∑
r≥0

xrh̄r),(η ,∑
r≥0

yrh̄r)]) = Ĵ([ξ ,η ],λ (ξ ,η)) = J([ξ ,η ])+λ (ξ ,η).

On the other hand,

1
h̄
[Ĵ(ξ ,∑

r≥0
xrh̄r), Ĵ(η ,∑

r≥0
yrh̄r)]? =

1
h̄
[J(ξ )+ ∑

r≥0
xrh̄r,J(η)+ ∑

r≥0
yrh̄r]?

=
1
h̄
[J(ξ ),J(η)]?+

1
h̄
[J(ξ ),∑

r≥0
yrh̄r]?

+
1
h̄
[∑
r≥0

xrh̄r,J(η)]?+
1
h̄
[∑
r≥0

xrh̄r,∑
r≥0

yrh̄r]?

=
1
h̄
[J(ξ ),J(η)]?.

This last equality is fulfilled because the three last brackets are equal to zero. Then, by
definition of λ , it is clear that Ĵ is a Lie algebra homomorphism. �

Corollary 1. The quantum momentum map Ĵ, called canonical extended q.m.m. associated
to J, is an Ad∗-equivariant q.m.m. corresponding to the quantum action ρ̂c.

Proposition 4. The Ad∗-equivariant q.m.m. Ĵ recovers the Ad∗-equivariant c.m.m. J̃0 at
the classical limit.

Proof. The application Ĵ can be written as

Ĵ(ξ ,∑
r≥0

xrh̄r) = J(ξ )+ ∑
r≥0

xrh̄r = J0(ξ )+J+(ξ )+ ∑
r≥0

xrh̄r.

So, the classical limit of Ĵ(ξ ,∑
r≥0

xrh̄r) agree with J̃(ξ ,x0) = J0(ξ )+ x0 for all ξ ∈ g and

x0 ∈ R.
On the other hand, it is clear that ĝ/[[h̄]] ∼ g⊕R= g̃, and C∞(M)[[h̄]]/[[h̄]] ∼C∞(M). Thus

we can consider that the Ad∗-equivariant q.m.m. Ĵ recovers the Ad∗-equivariant c.m.m. J̃0
at the classical limit. �

It is easy to see that there exists µ̃Lie if and only if there exists Ĵ.

Lemma 3. There exists J̃+ ∈ h̄ C1(g̃,C∞(M))[[h̄]] such that iX̃(ξ ,a)
Ω = dJ̃+(ξ ,a) if and only

if there exists J+ ∈ h̄ C1(g,C∞(M))[[h̄]] such that iXξ
Ω = dJ+(ξ ). That is, there exists µ̃Lie

if and only if there exists Ĵ.

Proof. If there exists J̃+ that satisfies iX̃(ξ ,a)
Ω = dJ̃+(ξ ,a), it is clear that J+ : g →

C∞(M)[[h̄]], defined as J+(ξ ) = J̃+(ξ ,0), satisfies iX̃ξ

Ω = dJ̃+(ξ ).

Reciprocally, if there exists J+ ∈C∞(M)[[h̄]] such that verifies iX̃ξ

Ω = dJ̃+(ξ ), it is clear

that J̃+ : g̃→C∞(M)[[h̄]], defined as J̃+(ξ ,a) = J+(ξ ), satisfies iX̃(ξ ,a)
Ω = dJ̃+(ξ ,a). �
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Note 4. Notice that the quantum anomaly λ can be written as λ (ξ ,η) = ∑
r≥0

λr(ξ ,η) h̄r,

where λr ∈C2(g,R) for all r ∈ R, and its constant term λ0(ξ ,η) is the classical anomaly
λ0(ξ ,η) = {J0(ξ ),J0(η)}−J0([ξ ,η ]) = Σ(ξ ,η). Then, the quantum anomaly λ

• contains only higher order terms if the G-action on M is Hamiltonian,
• includes the classical anomaly as its zero order term if the G-action on M is weakly

Hamiltonian.
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