WHEN THE IDENTITY IS A (σ, τ) -DERIVATION

CARLOS C. PEÑA

ABSTRACT. The concept of (σ, τ) -derivation on an algebra generalizes the usual notion of derivation. We focus our attention on conditions under which the identity operator on an associative algebra \mathscr{U} on a field \mathfrak{K} is a (σ, τ) -derivation.

Let \mathscr{U}, \mathscr{B} be associative algebras on a fixed field \mathfrak{K} . Let us consider a \mathscr{B} -bimodule \mathfrak{X} and linear mappings $\sigma, \tau : \mathscr{U} \to \mathscr{B}$ and $d : \mathscr{U} \to \mathfrak{X}$. Then d is called a (σ, τ) -derivation from \mathscr{U} into \mathfrak{X} if $d(ab) = \sigma(a)d(b) + d(a)\tau(b)$ for all $a, b \in \mathscr{U}$. If $\sigma = \tau$ we will simply say that d is a σ -derivation (see the Examples 2, 3, 4, 5 and 6 below). This notion generalizes the current concept of a derivation and actually it constitutes a matter of intensive research. For example, for studies concerning inner (σ, τ) -derivations of the type $d_x(a) = \sigma(a)x - x\tau(a)$, where $a \in \mathscr{U}$ and $x \in \mathfrak{X}$, the reader can see [7], [2]. For researches in the context of Banach bimodules see [3], [5]. The problematic about automatic continuity of σ -derivations or (σ, τ) -amenability on C^* -algebras is treated in [4] and [6] res-pectively. However, the investigation of the issue is more limited in the context of general algebras. If d is a (σ, τ) derivation it is straightforward to see that

$$(\sigma(ab) - \sigma(a)\sigma(b))d(c) = d(a)(\tau(bc) - \tau(b)\tau(c))$$

for all $a, b, c \in \mathcal{U}$. It is timely to point out that if \mathcal{U} and \mathcal{B} are Banach associative algebras, d is a σ -derivation whose separating space has null right annihilator and σ is continuous, then σ becomes a homomorphism. In this setting, d is bounded when the set $\{\sigma(ab) - \sigma(a)\sigma(b) : a, b \in \mathcal{U}\}$ has null left annihilator (cf. [4], Remark 2.4).

Our aim in this article is to determine conditions under which the identity mapping $\operatorname{Id}_{\mathscr{U}}$ on an associative algebra \mathscr{U} is a (σ, τ) -derivation (see Th. 10 below). When this is the case it will be seen that the mappings σ and τ have a very simple structure and are automatically continuous in the context of normed algebras. In Prop. 7 we will see that linear mappings σ and τ on a Banach algebra \mathscr{U} become bounded if there is some bounded (σ, τ) -derivation with null annihilator ideals. A last example of (σ, τ) -derivations connected with the identity mapping in a Banach space sequence will be given in Ex. 12.

Notation 1. We shall denote the usual unitization of an associative algebra \mathscr{U} over a field \mathfrak{K} as \mathscr{U}^{\sharp} . So, $\mathscr{U}^{\sharp} = \mathscr{U} \times \mathfrak{K}$ is provided with the natural \mathfrak{K} -vector space structure together with the multiplication of elements (a_1, k_1) and (a_2, k_2) of \mathscr{U}^{\sharp} defined as $(a_1, k_1)(a_2, k_2) = (a_1a_2 + k_2a_1 + k_1a_2, k_1k_2)$. Thus \mathscr{U}^{\sharp} becomes an associative algebra on \mathfrak{K} with unit element (0, 1). Let us denote by $j : \mathscr{U} \hookrightarrow \mathscr{U}^{\sharp}$ the injection of \mathscr{U} into \mathscr{U}^{\sharp} , $p : \mathscr{U}^{\sharp} \to \mathscr{U}$ the projection of \mathscr{U}^{\sharp} onto \mathfrak{K} . If $\sigma, \tau \in \mathscr{L}(\mathscr{U})$ then $\mathscr{D}(\sigma, \tau)$ (or simply $\mathscr{D}(\sigma)$ if $\sigma = \tau$) will denote the linear subspace of $\mathscr{L}(\mathscr{U})$ of (σ, τ) -derivations from \mathscr{U} into \mathscr{U} . As usual, if $a \in \mathscr{U}$ we will denote by L_a, R_a the elements of $\mathscr{L}(\mathscr{U})$ such that $L_a(x) = ax$ and $R_a(x) = xa$ for all $x \in \mathscr{U}$.

Palabras clave. Annihilator of an algebra; (σ, τ) -derivations; multipliers of an algebra; separating space of a linear map; annihilator ideals.

Example 2. Given $\mathfrak{h} \in \text{Hom}(\mathcal{U}, \mathscr{B})$ and a derivation $D : \mathscr{B} \to \mathfrak{X}$, the mapping $d = D \circ \mathfrak{h}$ is a \mathfrak{h} -derivation. In particular, if $n \in \mathbb{N}$ and n > 1 let d be a non-zero \mathfrak{h} -derivation on the matrix associative algebra $\mathscr{U} = \mathbf{M}_n(\mathfrak{K})$. If \mathfrak{h} is a homomorphism its kernel is a bilateral ideal of \mathscr{U} . Further, ker(\mathfrak{h}) \subseteq ker(d) and as \mathscr{U} is simple it has no non trivial bilateral ideals. Consequently, \mathfrak{h} must be injective. Indeed, \mathfrak{h} becomes an isomorphism and we can define $D : \mathscr{U} \to \mathscr{U}$ so that $D(x) = d(\mathfrak{h}^{-1}(x))$ if $x \in \mathscr{U}$. It is readily seen that D is a derivation and $d = D \circ \mathfrak{h}$.

Example 3. If \mathscr{U} is an associative algebra, every $\mathfrak{h} \in \text{Hom}(\mathscr{U})$ is a $\mathfrak{h}/2$ -derivation.

Example 4. If $\mathscr{U} = M_2(\mathfrak{K})$ and $x \in \mathscr{U}$, let

$$\boldsymbol{\sigma}\left(x\right) = \left[\begin{array}{cc} x_{11} & 0\\ 0 & x_{22} \end{array}\right], \quad d\left(x\right) = \left[\begin{array}{cc} 0 & x_{12}\\ x_{21} & 0 \end{array}\right]$$

Then d becomes a σ -derivation but $\sigma \notin \text{Hom}(\mathscr{U})$. More generally, if $n \in \mathbb{N}$ and $\mathscr{U} = M_n(\mathfrak{K})$, any linear mapping $T \in \mathscr{L}(\mathscr{U})$ uniquely defines n^2 -matrices $(T^{k,h})_{1 \leq k,h \leq n} \in \mathscr{U}$ so that $T(x) = (\sum_{k,h=1}^n T_{i,j}^{k,h} x_{k,h})_{1 \leq i,j \leq n}$ for all $x \in \mathscr{U}$. It is straightforward to see that if d is a σ -derivation the following system of matricial equations hold:

$$\delta_{j,k}d^{i,h} = d^{i,j}\sigma^{k,h} + \sigma^{i,j}d^{k,h}, \quad 1 \le i, j, k, h \le n$$

Example 5. Let $\mathscr{U} = \Re^n$. It is an associative algebra if we consider the usual \Re -vector space structure and the product of $x, y \in \mathscr{U}$ is defined as

$$x \cdot y = (\sum_{i=1}^{j} x_{j-i+1} y_i)_{1 \le j \le n}.$$

Let $d \in \mathscr{L}(\mathscr{U})$ so that $d(x_1, ..., x_n) = (x_2, ..., x_n, 0)$. If $n = 2, a, b \in \mathfrak{K}$ and $\sigma, \tau \in \mathscr{L}(\mathscr{U})$ have the canonical representation

$$[\sigma] = \begin{bmatrix} 1 & a \\ 0 & b \end{bmatrix}, \quad [\tau] = \begin{bmatrix} 1 & -a \\ 0 & -b \end{bmatrix},$$

then *d* is a (σ, τ) -derivation. The same conclusion holds if n = 3, $a, b, c \in \mathfrak{K}$ and $\sigma, \tau \in \mathscr{L}(\mathscr{U})$ have the canonical representation

$$[\sigma] = \begin{bmatrix} 1 & a & 0 \\ 0 & b & a \\ 0 & c & b-1 \end{bmatrix}, \quad [\tau] = \begin{bmatrix} 1 & -a & 0 \\ 0 & 1-b & -a \\ 0 & -c & -b \end{bmatrix}.$$

However, d is not a (σ, τ) *-derivation if n* \geq 4.

Example 6. Let \mathscr{U} be an abelian associative algebra over a field \mathfrak{K} , $\mathrm{Id}_{\mathscr{U}} \in \mathscr{D}(\sigma, \tau)$. Then $a(\sigma(b) - \tau(b)) = (\sigma(a) - \tau(a))b$ if $a, b \in \mathscr{U}$, i.e. $\sigma - \tau$ is a multiplier of \mathscr{U} .

Proposition 7. Let \mathscr{U} be an associative Banach algebra and let d be a bounded (σ, τ) derivation. If the left and right annihilator ideals of $d(\mathscr{U})$ are zero then σ and τ are
bounded.

Proof. Let $\{y\} \cup \{x_n\}_{n \in \mathbb{N}}$ in \mathscr{U} so that $(x_n, \sigma(x_n)) \to (0, y)$ in $\mathscr{U} \times \mathscr{U}$. If $z \in \mathscr{U}$ then $d(x_n z) = \sigma(x_n) d(z) + d(x_n) \tau(z)$ for any $n \in \mathbb{N}$. Letting $n \to \infty$ we get yd(z) = 0, i.e. y = 0 since $d(\mathscr{U})$ has null left annihilator. Consequently, σ is bounded since its separating space is trivial (cf. [1], p. 39). Analogously, it is seen that τ is also bounded.

Definition 8. Given $\sigma, \tau \in \mathscr{L}(\mathscr{U})$ we will say that $\operatorname{Id}_{\mathscr{U}}$ is a (σ, τ) -extendible derivation if it is a (σ, τ) -derivation and there are natural extensions $\sigma^{\sharp}, \tau^{\sharp} \in \mathscr{L}(\mathscr{U}^{\sharp})$ of σ and τ so that $\operatorname{Id}_{\mathscr{U}^{\sharp}}$ is also a $(\sigma^{\sharp}, \tau^{\sharp})$ -derivation.

Proposition 9. Let \mathscr{U} be a unitary associative algebra on a field \mathfrak{K} , $\sigma, \tau \in \mathscr{L}(\mathscr{U})$. So, $\mathrm{Id}_{\mathscr{U}} \in \mathscr{D}(\sigma, \tau)$ if and only if there are unique elements $k \in \mathfrak{K}$ and $a_0 \in \mathscr{U}$ such that $\sigma = k\mathrm{Id}_{\mathscr{U}} + R_{a_0}$ and $\tau = (1-k)\mathrm{Id}_{\mathscr{U}} - L_{a_0}$.

Proof. (\Rightarrow) If *e* denotes the unit of \mathscr{U} and $x \in \mathscr{U}$ then

$$x = \sigma(x) + x\tau(e) = \sigma(e)x + \tau(x)$$

As $e = \sigma(e) + \tau(e)$ the claim follows making k = 0 and $a_0 = \sigma(e)$.

(\Leftarrow) Let $\sigma = k \operatorname{Id}_{\mathscr{U}} + R_{a_0}$ and $\tau = (1-k) \operatorname{Id}_{\mathscr{U}} - L_{a_0}$, where $k \in \mathfrak{K}$ and $a_0 \in \mathscr{U}$. If $x, y \in \mathscr{U}$ we have

 $\sigma(x)y + x\tau(y) = (kx + xa_0) + x(y - ky - a_0y) = xy$

and the condition is sufficient.

Theorem 10. Let \mathscr{U} be an associative algebra over a field \Re .

- (i) Let $\sigma, \tau \in \mathscr{L}(\mathscr{U})$. So, $\operatorname{Id}_{\mathscr{U}}$ is a (σ, τ) -extendible derivation if and only if there exist $k \in \mathfrak{K}$ and $a_0 \in \mathscr{U}$ so that $\sigma = k\operatorname{Id}_{\mathscr{U}} + R_{a_0}$ and $\tau = (1-k)\operatorname{Id}_{\mathscr{U}} L_{a_0}$.
- (ii) If $\sigma^{\sharp}, \tau^{\sharp} \in \mathscr{L}(\mathscr{U}^{\sharp})$ and $\operatorname{Id}_{\mathscr{U}^{\sharp}} \in \mathscr{D}(\sigma^{\sharp}, \tau^{\sharp})$ then

$$(p \circ \sigma^{\sharp} \circ j + q \circ \sigma^{\sharp} \circ j)(a)b + a(p \circ \tau^{\sharp} \circ j + q \circ \tau^{\sharp} \circ j)(b) = ab$$

for all $a, b \in \mathcal{U}$.

Proof. (i)(\Rightarrow) Let us look for the structure of extensions σ^{\sharp} of σ and τ^{\sharp} of τ in $\mathscr{L}(\mathscr{U}^{\sharp})$ so that Id_{\mathscr{U}^{\sharp}} is still a ($\sigma^{\sharp}, \tau^{\sharp}$)-derivation. Let

$$\widetilde{\sigma} = q \circ \sigma^{\sharp} \circ j, \quad \widetilde{\tau} = q \circ \tau^{\sharp} \circ j$$

in $\mathscr{L}(\mathscr{U}, \mathfrak{K})$, $(a_{\sigma}, k_{\sigma}) = \sigma^{\sharp}(0, 1)$ and $(a_{\tau}, k_{\tau}) = \tau^{\sharp}(0, 1)$ in \mathscr{U}^{\sharp} . Then σ^{\sharp} and τ^{\sharp} should act on $(a, k) \in \mathscr{U}^{\sharp}$ as

$$\sigma^{\sharp}(a,k) = (\sigma(a) + ka_{\sigma}, \widetilde{\sigma}(a) + kk_{\sigma}),$$

$$\tau^{\sharp}(a,k) = (\tau(a) + ka_{\tau}, \widetilde{\tau}(a) + kk_{\tau}).$$

Now, if σ^{\sharp} extends σ we have

$$(\boldsymbol{\sigma}(a), \widetilde{\boldsymbol{\sigma}}(a)) = \left(\boldsymbol{\sigma}^{\sharp} \circ j\right)(a) = (j \circ \boldsymbol{\sigma})(a) = (\boldsymbol{\sigma}(a), 0)$$

for all $a \in \mathscr{U}$, i.e. $\tilde{\sigma} = 0$. Analogously, $\tilde{\tau} = 0$. Now, let m = (a,k) and n = (b,h)in \mathscr{U}^{\sharp} . Since \mathscr{U}^{\sharp} is an associative algebra over \mathfrak{K} and $\mathrm{Id}_{\mathscr{U}^{\sharp}}$ is assumed to be a $(\sigma^{\sharp}, \tau^{\sharp})$ -derivation we see that

$$p(mn) = p\left(\sigma^{\sharp}(m)n + m\tau^{\sharp}(n)\right)$$

= $\sigma(a)b + a\tau(b) + k[a_{\sigma}b + k_{\sigma}b + \tau(b)]$
+ $h[\sigma(a) + aa_{\tau} + k_{\tau}a] + kh(a_{\sigma} + a_{\tau})$
= $ab + kb + ha$,
 $q(mn) = q\left(\sigma^{\sharp}(m)n + m\tau^{\sharp}(n)\right)$
= $kh(k_{\sigma} + k_{\tau})$
= kh .

Actas del XI Congreso Dr. Antonio A. R. Monteiro (2011), 2012

Consequently, as Id $_{\mathscr{U}}$ is actually a (σ, τ) -derivation the equation

$$k[a_{\sigma}b + k_{\sigma}b + \tau(b)] + h[\sigma(a) + aa_{\tau} + k_{\tau}a] + kh(a_{\sigma} + a_{\tau}) = kb + ha$$

should hold for all $a, b \in \mathcal{U}$, $k, h \in \mathfrak{K}$. In particular, by choosing a = b = 0 and k = h = 1 we see that $a_{\sigma} + a_{\tau} = 0$. Hence

$$k_{\sigma} + k_{\tau} = q \left(a_{\sigma} + a_{\tau}, k_{\sigma} + k_{\tau} \right)$$

= $q \left[\sigma^{\sharp} \left(0, 1 \right) \left(0, 1 \right) + \left(0, 1 \right) \tau^{\sharp} \left(0, 1 \right) \right]$
= $q \left[\mathrm{Id}_{\mathscr{U}^{\sharp}} \left(\left(0, 1 \right) \left(0, 1 \right) \right) \right]$
= 1

and

$$k[a_{\sigma}b+k_{\sigma}b+\tau(b)]+h[\sigma(a)-aa_{\sigma}+(1-k_{\sigma})a]=kb+ha.$$

So, if k = 0 and h = 1 we see that $\sigma = k_{\sigma} \operatorname{Id}_{\mathscr{U}} + R_{a_{\sigma}}$, while if k = 1 and h = 0 then $\tau = (1 - k_{\sigma}) \operatorname{Id}_{\mathscr{U}} - L_{a_{\sigma}}$. Now (i) follows immediately.

(i)(\Leftarrow) If $k_0 \in \mathfrak{K}$ and $a_0 \in \mathscr{U}$ we will prove that $\operatorname{Id}_{\mathscr{U}}$ is a (σ, τ) -extendible derivation if $\sigma = k_0 \operatorname{Id}_{\mathscr{U}} + R_{a_0}$ and $\tau = (1 - k_0) \operatorname{Id}_{\mathscr{U}} - L_{a_0}$. For, as \mathscr{U} is an associative algebra on \mathfrak{K} , it is easy to see that $\operatorname{Id}_{\mathscr{U}} \in \mathscr{D}(\sigma, \tau)$. Further, let $\sigma_k = (k_0 - k) \operatorname{Id}_{\mathscr{U}^{\sharp}} + R_{(a_0,k)}$ and $\tau_k = (1 - k_0 + k) \operatorname{Id}_{\mathscr{U}^{\sharp}} - L_{(a_0,k)}$. Then $\operatorname{Id}_{\mathscr{U}^{\sharp}} \in \mathscr{D}(\sigma_k, \tau_k)$ and given $x \in \mathscr{U}$ we have

$$\sigma_k(x,0) = ((k_0 - k)x + xa_0 + kx, 0) = (\sigma(x), 0),$$

$$\tau_k(x,0) = ((1 - k_0 + k)x - a_0x - kx, 0) = (\tau(x), 0),$$

i.e. σ_k and τ_k are natural extensions of σ and τ respectively. Finally, by Prop. 9 we have $\operatorname{Id}_{\mathscr{U}^{\sharp}} \in \mathscr{D}(\sigma_k, \tau_k)$ and the assertion holds.

(ii) It is straightforward.

Corollary 11. If $\operatorname{Id}_{\mathscr{U}}$ is a \mathfrak{h} -extendible derivation then $\mathfrak{h}(ab) = a\mathfrak{h}(b) = \mathfrak{h}(a)b$ for all $a, b \in \mathscr{U}$, i.e. \mathfrak{h} becomes a multiplier of \mathscr{U} .

Example 12. Let $\mathscr{U} = c_0(\mathbb{N})$ be the usual Banach associative algebra of convergent (complex) sequences on \mathbb{N} to zero. Thus \mathscr{U}^{\sharp} can be identified with the Banach subspace of $l^{\infty}(\mathbb{N})$ of convergent sequences. Let $\sigma^{\sharp}, \tau^{\sharp} \in \mathscr{L}(\mathscr{U}^{\sharp})$ so that $\mathrm{Id}_{\mathscr{U}^{\sharp}} \in \mathscr{D}(\sigma^{\sharp}, \tau^{\sharp})$. By Th. 10, (ii), if we write

$$\sigma = p \circ \sigma^{\sharp} \circ j, \quad \widetilde{\sigma} = q \circ \sigma^{\sharp} \circ j, \quad \tau = p \circ \tau^{\sharp} \circ j, \quad \widetilde{\tau} = q \circ \tau^{\sharp} \circ j,$$

then

$$(\sigma + \widetilde{\sigma})(a)b + a(\tau + \widetilde{\tau})(b) = ab \tag{1}$$

for all $a, b \in c_0(\mathbb{N})$. As $\sigma, \tau \in \mathscr{B}(c_0(\mathbb{N}))$, if $x \in c_0(\mathbb{N})$ then

$$\sigma(x) = \left\{\sum_{n=1}^{\infty} \sigma_{m,n} x_n\right\}_{m \in \mathbb{N}} \quad and \quad \tau(x) = \left\{\sum_{n=1}^{\infty} \tau_{m,n} x_n\right\}_{m \in \mathbb{N}}.$$

Indeed, the complex matrices $\{\sigma_{m,n}\}_{m,n\in\mathbb{N}}$ and $\{\tau_{m,n}\}_{m,n\in\mathbb{N}}$ are unique, their columns belong to $c_0(\mathbb{N})$ and their rows are uniformly bounded in $l^1(\mathbb{N})$. Besides, as $\tilde{\sigma}, \tilde{\tau} \in c_0(\mathbb{N})^*$ we can write $\tilde{\sigma} \equiv \{\sigma_m\}_{m\in\mathbb{N}}$ and $\tilde{\tau} \equiv \{\tau_m\}_{m=1}^{\infty}$ in $l^1(\mathbb{N})$. Letting $a = \{\delta_{i,k}\}_{k\in\mathbb{N}}$ and $b = \{\delta_{j,k}\}_{k\in\mathbb{N}}$ in (1), where $i, j \in \mathbb{N}$, we obtain the following equations:

$$\delta_{i,j}a = a\left(\left\{\tau_{m,j}\right\}_{m=1}^{\infty} + \tau_j\right) + \left(\left\{\sigma_{m,i}\right\}_{m=1}^{\infty} + \sigma_i\right)b.$$
(2)

Actas del XI Congreso Dr. Antonio A. R. Monteiro (2011), 2012

From (2) we conclude that

$$\sigma_i + \sigma_{i,i} + \tau_i + \tau_{i,i} = 1 \quad \text{for all } i \in \mathbb{N},$$

$$\sigma_{i,i} + \sigma_i = \tau_{i,i} + \tau_i = 0 \quad \text{for all } i, j \in \mathbb{N}, i \neq j$$

So, $\sigma_i = -\lim_{j\to\infty} \sigma_{j,i} = 0$ and $\tau_j = -\lim_{i\to\infty} \tau_{i,j} = 0$ for all $i, j \in \mathbb{N}$, i.e. $\tilde{\sigma} = \tilde{\tau} = 0$. Since $\sigma_{j,i} = \tau_{i,j} = 0$ if $j \neq i$ then σ and τ become diagonal operators, and as $\sigma_{i,i} + \tau_{i,i} = 1$ for all i then $\sigma + \tau = \mathrm{Id}_{c_0(\mathbb{N})}$ and $\mathrm{Id}_{c_0(\mathbb{N})} \in \mathscr{D}(\sigma, \tau)$. We observe that, as diagonal operators, σ and τ are multipliers on $c_0(\mathbb{N})$. However, given a diagonal operator $\mathfrak{h} \in \mathscr{B}(c_0(\mathbb{N}))$ then $\mathrm{Id}_{\mathscr{U}}$ would be a not $\mathfrak{h}/2$ -extendible derivation. For instance, consider the diagonal operator \mathfrak{h} defined by a bounded complex sequence without limit point $\{\mathfrak{h}_n\}_{n\in\mathbb{N}}$. Then $\mathrm{Id}_{c_0(\mathbb{N})} \in \mathscr{D}(\mathfrak{h}/2)$. If it were $\mathfrak{h}/2$ -extendible, by Th. 10 we could write

$$\mathfrak{h}/2 = k \mathrm{Id}_{c_0(\mathbb{N})} + a_0 \mathrm{Id}_{c_0(\mathbb{N})} = (1-k) \mathrm{Id}_{c_0(\mathbb{N})} - a_0 \mathrm{Id}_{c_0(\mathbb{N})}$$
(3)

for some $k \in \mathbb{C}$ and $a_0 \in c_0(\mathbb{N})$. Thus $x = 2\{kx_n + a_0^n x_n\}_{n=1}^{\infty}$ if $x \in c_0(\mathbb{N})$. Hence $1 = 2(k+a_0^n)$ for all $n \in \mathbb{N}$ and necessarily k = 1/2. By (3) we have $\mathfrak{h}_n x_n/2 = (1/2+a_0^n)x_n$ if $x \in c_0(\mathbb{N})$ and $n \in \mathbb{N}$. Thus $\mathfrak{h}_n/2 = 1/2 + a_0^n$ for all $n \in \mathbb{N}$, which contradicts our election of \mathfrak{h} .

REFERENCES

- [1] Dales, H. G.; Eschmeier, J.; Laursen, K. & Willis, G.: *Introduction to Banach algebras, operators and harmonic analysis.* London Math. Soc., 57. Cambridge University Press, (2003).
- [2] Komatsu, H.: On inner (σ , τ)-derivations of simple rings. Math. J. Okayama Univ., 23, 33–36, (1981).
- [3] Mirzavaziri, M.: Types of derivations. The 18th Seminar of Math. Analysis and Appl., Tarbiat Moallem University, 1-5, (2009).
- [4] Mirzavaziri, M. & Moslehian, M. S.: Automatic continuity of σ-derivations on C*-algebras. Proc. Amer. Math. Soc., 134, no. 11, 3319–3327, (2006).
- [5] Mirzavaziri, M. & Moslehian, M. S.: σ-derivations in Banach algebras. Bull. Iranian Math. Soc., 32, no. 1, 65–78, (2006).
- [6] Mirzavaziri, M. & Moslehian, M. S.: (σ, τ) -amenability of C^{*}-algebras. arXiv:0911.2753v1 [Math.OA], 1–9, (2009).
- [7] Van Praag, P.: S-dérivations internes dans les corps. J. Algebra, 17, 470–473, (1971).

UNCPBA, FACULTAD DE CIENCIAS EXACTAS, NUCOMPA *E-mail*: ccpenia@exa.unicen.edu.ar