WHEN THE IDENTITY IS A (σ, τ)-DERIVATION

CARLOS C. PEÑA

Abstract

The concept of (σ, τ)-derivation on an algebra generalizes the usual notion of derivation. We focus our attention on conditions under which the identity operator on an associative algebra \mathscr{U} on a field \mathfrak{K} is a (σ, τ)-derivation.

Let \mathscr{U}, \mathscr{B} be associative algebras on a fixed field \mathfrak{K}. Let us consider a \mathscr{B}-bimodule \mathfrak{X} and linear mappings $\sigma, \tau: \mathscr{U} \rightarrow \mathscr{B}$ and $d: \mathscr{U} \rightarrow \mathfrak{X}$. Then d is called a (σ, τ)-derivation from \mathscr{U} into \mathfrak{X} if $d(a b)=\sigma(a) d(b)+d(a) \tau(b)$ for all $a, b \in \mathscr{U}$. If $\sigma=\tau$ we will simply say that d is a σ-derivation (see the Examples 2, 3, 4, 5 and 6 below). This notion generalizes the current concept of a derivation and actually it constitutes a matter of intensive research. For example, for studies concerning inner (σ, τ)-derivations of the type $d_{x}(a)=\sigma(a) x-$ $x \tau(a)$, where $a \in \mathscr{U}$ and $x \in \mathfrak{X}$, the reader can see [7], [2]. For researches in the context of Banach bimodules see [3], [5]. The problematic about automatic continuity of σ-derivations or (σ, τ)-amenability on C^{*}-algebras is treated in [4] and [6] res-pectively. However, the investigation of the issue is more limited in the context of general algebras. If d is a (σ, τ) derivation it is straightforward to see that

$$
(\sigma(a b)-\sigma(a) \sigma(b)) d(c)=d(a)(\tau(b c)-\tau(b) \tau(c))
$$

for all $a, b, c \in \mathscr{U}$. It is timely to point out that if \mathscr{U} and \mathscr{B} are Banach associative algebras, d is a σ-derivation whose separating space has null right annihilator and σ is continuous, then σ becomes a homomorphism. In this setting, d is bounded when the set $\{\sigma(a b)-\sigma(a) \sigma(b): a, b \in \mathscr{U}\}$ has null left annihilator (cf. [4], Remark 2.4).

Our aim in this article is to determine conditions under which the identity mapping Id \mathscr{U} on an associative algebra \mathscr{U} is a (σ, τ)-derivation (see Th. 10 below). When this is the case it will be seen that the mappings σ and τ have a very simple structure and are automatically continuous in the context of normed algebras. In Prop. 7 we will see that linear mappings σ and τ on a Banach algebra \mathscr{U} become bounded if there is some bounded (σ, τ)-derivation with null annihilator ideals. A last example of (σ, τ)-derivations connected with the identity mapping in a Banach space sequence will be given in Ex. 12.

Notation 1. We shall denote the usual unitization of an associative algebra \mathscr{U} over a field \mathfrak{K} as \mathscr{U}^{\sharp}. So, $\mathscr{U}^{\sharp}=\mathscr{U} \times \mathfrak{K}$ is provided with the natural \mathfrak{K}-vector space structure together with the multiplication of elements $\left(a_{1}, k_{1}\right)$ and $\left(a_{2}, k_{2}\right)$ of $\mathscr{U}{ }^{\sharp}$ defined as $\left(a_{1}, k_{1}\right)\left(a_{2}, k_{2}\right)=$ $\left(a_{1} a_{2}+k_{2} a_{1}+k_{1} a_{2}, k_{1} k_{2}\right)$. Thus \mathscr{U}^{\sharp} becomes an associative algebra on \mathfrak{K} with unit element $(0,1)$. Let us denote by $j: \mathscr{U} \hookrightarrow \mathscr{U}^{\sharp}$ the injection of \mathscr{U} into $\mathscr{U}^{\sharp}, p: \mathscr{U}^{\sharp} \rightarrow \mathscr{U}$ the projection of \mathscr{U}^{\sharp} onto $\mathscr{U}, q: \mathscr{U}^{\sharp} \rightarrow \mathfrak{K}$ the projection of \mathscr{U}^{\sharp} onto \mathfrak{K}. If $\sigma, \tau \in \mathscr{L}(\mathscr{U})$ then $\mathscr{D}(\sigma, \tau)$ (or simply $\mathscr{D}(\sigma)$ if $\sigma=\tau)$ will denote the linear subspace of $\mathscr{L}(\mathscr{U})$ of (σ, τ)-derivations from \mathscr{U} into \mathscr{U}. As usual, if $a \in \mathscr{U}$ we will denote by L_{a}, R_{a} the elements of $\mathscr{L}(\mathscr{U})$ such that $L_{a}(x)=a x$ and $R_{a}(x)=x a$ for all $x \in \mathscr{U}$.

[^0]Example 2. Given $\mathfrak{h} \in \operatorname{Hom}(\mathscr{U}, \mathscr{B})$ and a derivation $D: \mathscr{B} \rightarrow \mathfrak{X}$, the mapping $d=D \circ \mathfrak{h}$ is a \mathfrak{h}-derivation. In particular, if $n \in \mathbb{N}$ and $n>1$ let d be a non-zero \mathfrak{h}-derivation on the matrix associative algebra $\mathscr{U}=\mathbf{M}_{n}(\mathfrak{K})$. If \mathfrak{h} is a homomorphism its kernel is a bilateral ideal of \mathscr{U}. Further, $\operatorname{ker}(\mathfrak{h}) \subseteq \operatorname{ker}(d)$ and as \mathscr{U} is simple it has no non trivial bilateral ideals. Consequently, \mathfrak{h} must be injective. Indeed, \mathfrak{h} becomes an isomorphism and we can define $D: \mathscr{U} \rightarrow \mathscr{U}$ so that $D(x)=d\left(\mathfrak{h}^{-1}(x)\right)$ if $x \in \mathscr{U}$. It is readily seen that D is a derivation and $d=D \circ \mathfrak{h}$.
Example 3. If \mathscr{U} is an associative algebra, every $\mathfrak{h} \in \operatorname{Hom}(\mathscr{U})$ is a $\mathfrak{h} / 2$-derivation.
Example 4. If $\mathscr{U}=\mathrm{M}_{2}(\mathfrak{K})$ and $x \in \mathscr{U}$, let

$$
\sigma(x)=\left[\begin{array}{cc}
x_{11} & 0 \\
0 & x_{22}
\end{array}\right], \quad d(x)=\left[\begin{array}{cc}
0 & x_{12} \\
x_{21} & 0
\end{array}\right]
$$

Then d becomes a σ-derivation but $\sigma \notin \operatorname{Hom}(\mathscr{U})$. More generally, if $n \in \mathbb{N}$ and $\mathscr{U}=$ $\mathrm{M}_{n}(\mathfrak{K})$, any linear mapping $T \in \mathscr{L}(\mathscr{U})$ uniquely defines n^{2}-matrices $\left(T^{k, h}\right)_{1 \leq k, h \leq n} \in \mathscr{U}$ so that $T(x)=\left(\sum_{k, h=1}^{n} T_{i, j}^{k, h} x_{k, h}\right)_{1 \leq i, j \leq n}$ for all $x \in \mathscr{U}$. It is straightforward to see that if d is $a \sigma$-derivation the following system of matricial equations hold:

$$
\delta_{j, k} d^{i, h}=d^{i, j} \sigma^{k, h}+\sigma^{i, j} d^{k, h}, \quad 1 \leq i, j, k, h \leq n
$$

Example 5. Let $\mathscr{U}=\mathfrak{K}^{n}$. It is an associative algebra if we consider the usual \mathfrak{K}-vector space structure and the product of $x, y \in \mathscr{U}$ is defined as

$$
x \cdot y=\left(\sum_{i=1}^{j} x_{j-i+1} y_{i}\right)_{1 \leq j \leq n}
$$

Let $d \in \mathscr{L}(\mathscr{U})$ so that $d\left(x_{1}, \ldots, x_{n}\right)=\left(x_{2}, \ldots, x_{n}, 0\right)$. If $n=2, a, b \in \mathfrak{K}$ and $\sigma, \tau \in \mathscr{L}(\mathscr{U})$ have the canonical representation

$$
[\sigma]=\left[\begin{array}{cc}
1 & a \\
0 & b
\end{array}\right], \quad[\tau]=\left[\begin{array}{cc}
1 & -a \\
0 & -b
\end{array}\right]
$$

then d is $a(\sigma, \tau)$-derivation. The same conclusion holds if $n=3, a, b, c \in \mathfrak{K}$ and $\sigma, \tau \in$ $\mathscr{L}(\mathscr{U})$ have the canonical representation

$$
[\sigma]=\left[\begin{array}{ccc}
1 & a & 0 \\
0 & b & a \\
0 & c & b-1
\end{array}\right], \quad[\tau]=\left[\begin{array}{ccc}
1 & -a & 0 \\
0 & 1-b & -a \\
0 & -c & -b
\end{array}\right]
$$

However, d is not a (σ, τ)-derivation if $n \geq 4$.
Example 6. Let \mathscr{U} be an abelian associative algebra over a field $\mathfrak{K}, \operatorname{Id}_{\mathscr{U}} \in \mathscr{D}(\sigma, \tau)$. Then $a(\sigma(b)-\tau(b))=(\sigma(a)-\tau(a)) b$ if $a, b \in \mathscr{U}$, i.e. $\sigma-\tau$ is a multiplier of \mathscr{U}.
Proposition 7. Let \mathscr{U} be an associative Banach algebra and let d be a bounded (σ, τ) derivation. If the left and right annihilator ideals of $d(\mathscr{U})$ are zero then σ and τ are bounded.

Proof. Let $\{y\} \cup\left\{x_{n}\right\}_{n \in \mathbb{N}}$ in \mathscr{U} so that $\left(x_{n}, \sigma\left(x_{n}\right)\right) \rightarrow(0, y)$ in $\mathscr{U} \times \mathscr{U}$. If $z \in \mathscr{U}$ then $d\left(x_{n} z\right)=\sigma\left(x_{n}\right) d(z)+d\left(x_{n}\right) \tau(z)$ for any $n \in \mathbb{N}$. Letting $n \rightarrow \infty$ we get $y d(z)=0$, i.e. $y=0$ since $d(\mathscr{U})$ has null left annihilator. Consequently, σ is bounded since its separating space is trivial (cf. [1], p. 39). Analogously, it is seen that τ is also bounded.

Definition 8. Given $\sigma, \tau \in \mathscr{L}(\mathscr{U})$ we will say that $\mathrm{Id}_{\mathscr{U}}$ is a (σ, τ)-extendible derivation if it is a (σ, τ)-derivation and there are natural extensions $\sigma^{\sharp}, \tau^{\sharp} \in \mathscr{L}\left(\mathscr{U}^{\sharp}\right)$ of σ and τ so that $\mathrm{Id}_{\mathscr{U}}{ }^{\sharp}$ is also a $\left(\sigma^{\sharp}, \tau^{\sharp}\right)$-derivation.

Proposition 9. Let \mathscr{U} be a unitary associative algebra on a field $\mathfrak{K}, \sigma, \tau \in \mathscr{L}(\mathscr{U})$. So, $\operatorname{Id}_{\mathscr{U}} \in \mathscr{D}(\sigma, \tau)$ if and only if there are unique elements $k \in \mathfrak{K}$ and $a_{0} \in \mathscr{U}$ such that $\sigma=$ $k \operatorname{Id}_{\mathscr{U}}+R_{a_{0}}$ and $\tau=(1-k) \operatorname{Id}_{\mathscr{U}}-L_{a_{0}}$.

Proof. $\quad(\Rightarrow)$ If e denotes the unit of \mathscr{U} and $x \in \mathscr{U}$ then

$$
x=\sigma(x)+x \tau(e)=\sigma(e) x+\tau(x)
$$

As $e=\sigma(e)+\tau(e)$ the claim follows making $k=0$ and $a_{0}=\sigma(e)$.
(\Leftarrow) Let $\sigma=k \operatorname{Id} \mathscr{U}+R_{a_{0}}$ and $\tau=(1-k) \operatorname{Id}_{\mathscr{U}}-L_{a_{0}}$, where $k \in \mathscr{K}$ and $a_{0} \in \mathscr{U}$. If $x, y \in \mathscr{U}$ we have

$$
\sigma(x) y+x \tau(y)=\left(k x+x a_{0}\right)+x\left(y-k y-a_{0} y\right)=x y
$$

and the condition is sufficient.

Theorem 10. Let \mathscr{U} be an associative algebra over a field \mathfrak{K}.
(i) Let $\sigma, \tau \in \mathscr{L}(\mathscr{U})$. So, $\mathrm{Id}_{\mathscr{U}}$ is a (σ, τ)-extendible derivation if and only if there exist $k \in \mathfrak{K}$ and $a_{0} \in \mathscr{U}$ so that $\sigma=k \operatorname{Id}_{\mathscr{U}}+R_{a_{0}}$ and $\tau=(1-k) \operatorname{Id} \mathscr{U}-L_{a_{0}}$.
(ii) If $\sigma^{\sharp}, \tau^{\sharp} \in \mathscr{L}\left(\mathscr{U}^{\sharp}\right)$ and $\operatorname{Id}_{\mathscr{U}}{ }^{\sharp} \in \mathscr{D}\left(\sigma^{\sharp}, \tau^{\sharp}\right)$ then

$$
\left(p \circ \sigma^{\sharp} \circ j+q \circ \sigma^{\sharp} \circ j\right)(a) b+a\left(p \circ \tau^{\sharp} \circ j+q \circ \tau^{\sharp} \circ j\right)(b)=a b
$$

for all $a, b \in \mathscr{U}$.
Proof. $\quad(i)(\Rightarrow)$ Let us look for the structure of extensions σ^{\sharp} of σ and τ^{\sharp} of τ in $\mathscr{L}\left(\mathscr{U}^{\sharp}\right)$ so that $\mathrm{Id}_{\mathscr{U}^{\sharp}}$ is still a $\left(\sigma^{\sharp}, \tau^{\sharp}\right)$-derivation. Let

$$
\widetilde{\sigma}=q \circ \sigma^{\sharp} \circ j, \quad \tilde{\tau}=q \circ \tau^{\sharp} \circ j
$$

in $\mathscr{L}(\mathscr{U}, \mathfrak{K}),\left(a_{\sigma}, k_{\sigma}\right)=\sigma^{\sharp}(0,1)$ and $\left(a_{\tau}, k_{\tau}\right)=\tau^{\sharp}(0,1)$ in \mathscr{U}^{\sharp}. Then σ^{\sharp} and τ^{\sharp} should act on $(a, k) \in \mathscr{U}^{\sharp}$ as

$$
\begin{aligned}
\sigma^{\sharp}(a, k) & =\left(\sigma(a)+k a_{\sigma}, \tilde{\sigma}(a)+k k_{\sigma}\right), \\
\tau^{\sharp}(a, k) & =\left(\tau(a)+k a_{\tau}, \tilde{\tau}(a)+k k_{\tau}\right) .
\end{aligned}
$$

Now, if σ^{\sharp} extends σ we have

$$
(\sigma(a), \widetilde{\sigma}(a))=\left(\sigma^{\sharp} \circ j\right)(a)=(j \circ \sigma)(a)=(\sigma(a), 0)
$$

for all $a \in \mathscr{U}$, i.e. $\widetilde{\sigma}=0$. Analogously, $\tilde{\tau}=0$. Now, let $m=(a, k)$ and $n=(b, h)$ in \mathscr{U}^{\sharp}. Since \mathscr{U}^{\sharp} is an associative algebra over \mathfrak{K} and $\mathrm{Id}_{\mathscr{U}^{\sharp}}$ is assumed to be a $\left(\sigma^{\sharp}, \tau^{\sharp}\right)$-derivation we see that

$$
\begin{aligned}
p(m n)= & p\left(\sigma^{\sharp}(m) n+m \tau^{\sharp}(n)\right) \\
= & \sigma(a) b+a \tau(b)+k\left[a_{\sigma} b+k_{\sigma} b+\tau(b)\right] \\
& +h\left[\sigma(a)+a a_{\tau}+k_{\tau} a\right]+k h\left(a_{\sigma}+a_{\tau}\right) \\
= & a b+k b+h a, \\
q(m n)= & q\left(\sigma^{\sharp}(m) n+m \tau^{\sharp}(n)\right) \\
= & k h\left(k_{\sigma}+k_{\tau}\right) \\
= & k h .
\end{aligned}
$$

Consequently, as Id \mathscr{U} is actually a (σ, τ)-derivation the equation

$$
k\left[a_{\sigma} b+k_{\sigma} b+\tau(b)\right]+h\left[\sigma(a)+a a_{\tau}+k_{\tau} a\right]+k h\left(a_{\sigma}+a_{\tau}\right)=k b+h a
$$

should hold for all $a, b \in \mathscr{U}, k, h \in \mathfrak{K}$. In particular, by choosing $a=b=0$ and $k=h=1$ we see that $a_{\sigma}+a_{\tau}=0$. Hence

$$
\begin{aligned}
k_{\sigma}+k_{\tau} & =q\left(a_{\sigma}+a_{\tau}, k_{\sigma}+k_{\tau}\right) \\
& =q\left[\sigma^{\sharp}(0,1)(0,1)+(0,1) \tau^{\sharp}(0,1)\right] \\
& =q\left[\operatorname{Id}_{\mathscr{U}^{\sharp}}((0,1)(0,1))\right] \\
& =1
\end{aligned}
$$

and

$$
k\left[a_{\sigma} b+k_{\sigma} b+\tau(b)\right]+h\left[\sigma(a)-a a_{\sigma}+\left(1-k_{\sigma}\right) a\right]=k b+h a .
$$

So, if $k=0$ and $h=1$ we see that $\sigma=k_{\sigma} \operatorname{Id}_{\mathscr{U}}+R_{a_{\sigma}}$, while if $k=1$ and $h=0$ then $\tau=\left(1-k_{\sigma}\right) \mathrm{Id}_{\mathscr{U}}-L_{a_{\sigma}}$. Now (i) follows immediately.
(i) (\Leftarrow) If $k_{0} \in \mathfrak{K}$ and $a_{0} \in \mathscr{U}$ we will prove that $\operatorname{Id}_{\mathscr{U}}$ is a (σ, τ)-extendible derivation if $\sigma=k_{0} \mathrm{Id}_{\mathscr{U}}+R_{a_{0}}$ and $\tau=\left(1-k_{0}\right) \mathrm{Id}_{\mathscr{U}}-L_{a_{0}}$. For, as \mathscr{U} is an associative algebra on \mathfrak{K}, it is easy to see that $\mathrm{Id}_{\mathscr{U}} \in \mathscr{D}(\sigma, \tau)$. Further, let $\sigma_{k}=\left(k_{0}-k\right) \mathrm{Id}_{\mathscr{U} \sharp}+R_{\left(a_{0}, k\right)}$ and $\tau_{k}=\left(1-k_{0}+k\right) \operatorname{Id}_{\mathscr{U}^{\sharp}}-L_{\left(a_{0}, k\right)}$. Then $\operatorname{Id}_{\mathscr{U} \sharp} \in \mathscr{D}\left(\sigma_{k}, \tau_{k}\right)$ and given $x \in \mathscr{U}$ we have

$$
\begin{aligned}
\sigma_{k}(x, 0) & =\left(\left(k_{0}-k\right) x+x a_{0}+k x, 0\right)=(\sigma(x), 0), \\
\tau_{k}(x, 0) & =\left(\left(1-k_{0}+k\right) x-a_{0} x-k x, 0\right)=(\tau(x), 0),
\end{aligned}
$$

i.e. σ_{k} and τ_{k} are natural extensions of σ and τ respectively. Finally, by Prop. 9 we have $\operatorname{Id}_{\mathscr{U} \sharp} \in \mathscr{D}\left(\sigma_{k}, \tau_{k}\right)$ and the assertion holds.
(ii) It is straightforward.

Corollary 11. If $\mathrm{Id}_{\mathscr{U}}$ is $a \mathfrak{h}$-extendible derivation then $\mathfrak{h}(a b)=a \mathfrak{h}(b)=\mathfrak{h}(a) b$ for all $a, b \in \mathscr{U}$, i.e. \mathfrak{h} becomes a multiplier of \mathscr{U}.

Example 12. Let $\mathscr{U}=c_{0}(\mathbb{N})$ be the usual Banach associative algebra of convergent (complex) sequences on \mathbb{N} to zero. Thus \mathscr{U}^{\sharp} can be identified with the Banach subspace of $l^{\infty}(\mathbb{N})$ of convergent sequences. Let $\sigma^{\sharp}, \tau^{\sharp} \in \mathscr{L}\left(\mathscr{U}^{\sharp}\right)$ so that $\mathrm{Id}_{\mathscr{U}}{ }^{\sharp} \in \mathscr{D}\left(\sigma^{\sharp}, \tau^{\sharp}\right)$. By Th. 10, (ii), if we write

$$
\sigma=p \circ \sigma^{\sharp} \circ j, \quad \widetilde{\sigma}=q \circ \sigma^{\sharp} \circ j, \quad \tau=p \circ \tau^{\sharp} \circ j, \quad \tilde{\tau}=q \circ \tau^{\sharp} \circ j,
$$

then

$$
\begin{equation*}
(\sigma+\widetilde{\sigma})(a) b+a(\tau+\widetilde{\tau})(b)=a b \tag{1}
\end{equation*}
$$

for all $a, b \in c_{0}(\mathbb{N})$. As $\sigma, \tau \in \mathscr{B}\left(c_{0}(\mathbb{N})\right)$, if $x \in c_{0}(\mathbb{N})$ then

$$
\sigma(x)=\left\{\sum_{n=1}^{\infty} \sigma_{m, n} x_{n}\right\}_{m \in \mathbb{N}} \quad \text { and } \quad \tau(x)=\left\{\sum_{n=1}^{\infty} \tau_{m, n} x_{n}\right\}_{m \in \mathbb{N}} .
$$

Indeed, the complex matrices $\left\{\sigma_{m, n}\right\}_{m, n \in \mathbb{N}}$ and $\left\{\tau_{m, n}\right\}_{m, n \in \mathbb{N}}$ are unique, their columns belong to $c_{0}(\mathbb{N})$ and their rows are uniformly bounded in $l^{1}(\mathbb{N})$. Besides, as $\widetilde{\sigma}, \widetilde{\tau} \in c_{0}(\mathbb{N})^{*}$ we can write $\widetilde{\sigma} \equiv\left\{\sigma_{m}\right\}_{m \in \mathbb{N}}$ and $\tilde{\tau} \equiv\left\{\tau_{m}\right\}_{m=1}^{\infty}$ in $l^{1}(\mathbb{N})$. Letting $a=\left\{\delta_{i, k}\right\}_{k \in \mathbb{N}}$ and $b=\left\{\boldsymbol{\delta}_{j, k}\right\}_{k \in \mathbb{N}}$ in (1), where $i, j \in \mathbb{N}$, we obtain the following equations:

$$
\begin{equation*}
\delta_{i, j} a=a\left(\left\{\tau_{m, j}\right\}_{m=1}^{\infty}+\tau_{j}\right)+\left(\left\{\sigma_{m, i}\right\}_{m=1}^{\infty}+\sigma_{i}\right) b . \tag{2}
\end{equation*}
$$

From (2) we conclude that

$$
\begin{aligned}
\sigma_{i}+\sigma_{i, i}+\tau_{i}+\tau_{i, i}=1 & \text { for all } i \in \mathbb{N}, \\
\sigma_{j, i}+\sigma_{i}=\tau_{i, j}+\tau_{j}=0 & \text { for all } i, j \in \mathbb{N}, i \neq j
\end{aligned}
$$

So, $\sigma_{i}=-\lim _{j \rightarrow \infty} \sigma_{j, i}=0$ and $\tau_{j}=-\lim _{i \rightarrow \infty} \tau_{i, j}=0$ for all $i, j \in \mathbb{N}$, i.e. $\widetilde{\sigma}=\widetilde{\tau}=0$. Since $\sigma_{j, i}=\tau_{i, j}=0$ if $j \neq i$ then σ and τ become diagonal operators, and as $\sigma_{i, i}+\tau_{i, i}=1$ for all i then $\sigma+\tau=\mathrm{Id}_{c_{0}(\mathbb{N})}$ and $\mathrm{Id}_{c_{0}(\mathbb{N})} \in \mathscr{D}(\sigma, \tau)$. We observe that, as diagonal operators, σ and τ are multipliers on $c_{0}(\mathbb{N})$. However, given a diagonal operator $\mathfrak{h} \in \mathscr{B}\left(c_{0}(\mathbb{N})\right)$ then $\mathrm{Id}_{\mathscr{U}}$ would be a not $\mathfrak{h} / 2$-extendible derivation. For instance, consider the diagonal operator \mathfrak{h} defined by a bounded complex sequence without limit point $\left\{\mathfrak{h}_{n}\right\}_{n \in \mathbb{N}}$. Then $\operatorname{Id}_{c_{0}(\mathbb{N})} \in \mathscr{D}(\mathfrak{h} / 2)$. If it were $\mathfrak{h} / 2$-extendible, by Th. 10 we could write

$$
\begin{equation*}
\mathfrak{h} / 2=k \operatorname{Id}_{c_{0}(\mathbb{N})}+a_{0} \operatorname{Id}_{c_{0}(\mathbb{N})}=(1-k) \operatorname{Id}_{c_{0}(\mathbb{N})}-a_{0} \operatorname{Id}_{c_{0}(\mathbb{N})} \tag{3}
\end{equation*}
$$

for some $k \in \mathbb{C}$ and $a_{0} \in c_{0}(\mathbb{N})$. Thus $x=2\left\{k x_{n}+a_{0}^{n} x_{n}\right\}_{n=1}^{\infty}$ if $x \in c_{0}(\mathbb{N})$. Hence $1=$ $2\left(k+a_{0}^{n}\right)$ for all $n \in \mathbb{N}$ and necessarily $k=1 / 2$. By (3) we have $\mathfrak{h}_{n} x_{n} / 2=\left(1 / 2+a_{0}^{n}\right) x_{n}$ if $x \in c_{0}(\mathbb{N})$ and $n \in \mathbb{N}$. Thus $\mathfrak{h}_{n} / 2=1 / 2+a_{0}^{n}$ for all $n \in \mathbb{N}$, which contradicts our election of \mathfrak{h}.

REFERENCES

[1] Dales, H. G.; Eschmeier, J.; Laursen, K. \& Willis, G.: Introduction to Banach algebras, operators and harmonic analysis. London Math. Soc., 57. Cambridge University Press, (2003).
[2] Komatsu, H.: On inner (σ, τ)-derivations of simple rings. Math. J. Okayama Univ., 23, 33-36, (1981).
[3] Mirzavaziri, M.: Types of derivations. The 18th Seminar of Math. Analysis and Appl., Tarbiat Moallem University, 1-5, (2009).
[4] Mirzavaziri, M. \& Moslehian, M. S.: Automatic continuity of σ-derivations on C^{*}-algebras. Proc. Amer. Math. Soc., 134, no. 11, 3319-3327, (2006).
[5] Mirzavaziri, M. \& Moslehian, M. S.: σ-derivations in Banach algebras. Bull. Iranian Math. Soc., 32, no. 1, 65-78, (2006).
[6] Mirzavaziri, M. \& Moslehian, M. S.: (σ, τ)-amenability of C^{*}-algebras. arXiv:0911.2753v1 [Math.OA], 1-9, (2009).
[7] Van Praag, P.: S-dérivations internes dans les corps. J. Algebra, 17, 470-473, (1971).
UNCPBA, Facultad de Ciencias Exactas, nUCOMPA
E-mail: ccpenia@exa.unicen.edu.ar

[^0]: Palabras clave. Annihilator of an algebra; (σ, τ)-derivations; multipliers of an algebra; separating space of a linear map; annihilator ideals.

