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A SHORT INTRODUCTION TO COMPRESSIVE SENSING

CARLOS CABRELLI

ABOUT THESE NOTES

These notes correspond to a four hour course given at the XII Congreso Dr. Antonio
Monteiro, that took place in the city of Bahía Blanca, Argentina in May 2013. I am grateful
to the organizers that invited me to lecture at that meeting. In particular I am enormously
grateful for the strong (friendly) pressure exerted by Sheldy Ombrosi in order that this
work was completed. I do not think that otherwise it would have been successful. I also
want to thank Diego Castaño from the Universidad Nacional del Sur who helped me, very
efficiently, with the LATEX of the notes.

The course was aimed at advanced undergraduates and graduate students with no previ-
ous background on the subject. It actually required not more than some knowledge of linear
algebra and some maturity in mathematics. While writing these notes, I refrained the nat-
ural tendency to expand them adding more material. Independent of the limitation of time,
I think it would have been a mistake. In the actual form it is a very basic and short intro-
duction that I believe does not scare prospective students and on the other hand it provides
a general idea of what this subject is about. This is at least my intention.

People that are interested to go deeper in the subject can browse the extensive bibliog-
raphy on the subject. I recommend the recent book [1], the tutorial papers listed at Rice
University DSP website [3], and the 2008 lecture by Terence Tao available in video [2].
The present notes have benefitted from these references and from a seminar organized by
Akram Aldroubi at Vanderbilt University on compressive sensing.

INTRODUCTION

Assume that x is a finite signal or vector in CN that is unknown. However we are able to
extract some information from x. This information should be enough to be able to recon-
struct the signal. So usually we will need N samples or measurements. Assume now that we
add some extra information about the vector x. We know that it is sparse in some orthonor-
mal basis (i.e. most of the coefficients of x in the basis are zero), and assume also that our
measurements take the form of linear functionals on x. Then we can reduce dramatically
the number of samples needed. This is basically the main idea behind compressive sensing.
We will describe in these notes some basic facts of this theory that, I think, will give some
insight of why it actually works.

NOTATION

Throughout this article we will fix N to be a positive integer. In applications N is usually
very large (of the order of 106). It will be convenient for the reader to have this in mind
throughout the paper.

If B is a set, |B| will denote its cardinality.
We will write ‖x‖p for the p-norm of the vector x, 1≤ p<+∞, i.e. ‖x‖p =(∑N

i=1 |xi|p)1/p.
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24 CARLOS CABRELLI

As usual ZN = {0, . . . ,N − 1} will denote the cyclic group of integers with addition
modulus N, or equivalently the multiplicative group of roots of unity of order N.

Sometimes in the text we will consider the vectors in CN as belonging to the space
l2(ZN), i.e. functions defined in ZN with the norm ‖x‖`2(ZN) =

(
∑

N−1
i=0 |x(i)|2

)1/2
.

For x ∈ CN , define the support of x as supp(x) = { j : x( j) 6= 0} and

‖x‖0 = |{i : x(i) 6= 0}|
the 0-norm of x. Note that ‖.‖0 is not a norm in the usual sense. The notation is justified by
the fact that lim

p→0+
‖x‖p = ‖x‖0.

If s≤ N, Σs := {x ∈ CN : ‖x‖0 ≤ s} is the set of s-sparse vectors in CN .
If T ⊆ {1, . . . ,N} and v is a vector in CN , vT will denote the vector in CN whose com-

ponents corresponding to indexes not in T are zero and the components with indexes in T
remain the same, i.e. vT (i) = v(i) for i ∈ T , vT (i) = 0 for i 6∈ T .

If A ∈Cm×N is a matrix, AT will denote the matrix in Cm×|T | where we only keep from A
the columns with indexes in T .

SOME TOOLS

The discrete Fourier Transform in CN . Define FN the Fourier matrix of order N with
coefficients:

Fjk =
1√
N

e−2πi jk/N , j,k = 0, . . . ,N−1.

That is, FN = F = [Fjk].
Using properties of the roots of unity of order N we see that:
• F∗F = FF∗ = IN (here F∗ denotes the transpose conjugate of F).
• ‖Fx‖2 = ‖x‖2 for all x ∈ CN .
• F is a Vandermonde matrix.

If x ∈ CN we define x̂ ∈ CN by

x̂( j) =
1√
N

N−1

∑
k=0

x(k)e−2πi jk/N .

x̂ is the Fourier transform of x. In matrix form we have

x̂ = Fx.

Since F is unitary, we have an inversion formula:

x = F∗x̂,

that is

x(k) =
1√
N

N−1

∑
j=0

x̂( j)e2πi jk/N .

For a vector in y ∈ CN we denote by y∨ its inverse Fourier transform, that is y∨ = F∗y.

Example 1. For N = 4 we have

F4 =
1
2


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

 .
Note that F is a Vandermonde matrix corresponding to [1, i,−1,−i].
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A SHORT INTRODUCTION TO COMPRESSIVE SENSING 25

Another important property of this matrix is that

N−1

∑
j=0

Fk j =
1√
N

N−1

∑
j=0

(e−2πik/N) j =
1√
N

1− (e−2πik/N)N

1− e−2πik/N = 0, if k 6= 0.

That is, the sum of the last N−1 rows is zero as well as the sum of the last N−1 columns
of F.

The sampling theorem in CN . There exists a version of the sampling theorem for the case
of functions defined in `2(ZN).

Theorem 1 (The Sampling Theorem). Let N = kd and x ∈ CN . Assume that supp(x̂) ⊆
Ωk = {0, . . . ,k− 1}. Then x can be reconstructed from the values {x(0),x(d),x(2d), . . . ,
x((k−1)d)} and the following reconstruction formula holds:

x(t) =
√

d/k
k−1

∑
j=0

x( jd) χ
∨
Ωk
(t + jd).

The theorem says that a vector in CN whose Fourier transform is supported in a small set
around the origin (band limited) can be recovered from its samples in a subgroup with rate
N/k, that is, the inverse of the bandwidth.

Proof. Let y ∈ Ck defined by y( j) = x̂( j), 0≤ j ≤ k−1.
Using the Fourier inversion formula on Ck we can write:

y(s) = (1/
√

k)
k−1

∑
j=0

α( j)e2πi s j
k , 0≤ s≤ k−1. (1)

That is,

x̂(s) = (1/
√

k)
k−1

∑
j=0

α( j)e2πi s j
k χΩk(s), 0≤ s≤ N−1.

Applying again the Fourier inversion on CN , in both sides of the equation and using the
linearity, we get,

x(t) = (1/
√

k)
k−1

∑
j=0

α( j)χ
∨
Ωk
(t + jd), 0≤ t ≤ N−1. (2)

Now we compute the coefficients α( j), 0≤ j ≤ k−1. From (1) we obtain that 0≤ j ≤
k−1,

α( j) =(1/
√

k)
k−1

∑
s=0

y(s)e−2πi js
k = (1/

√
k)

N−1

∑
s=0

x̂(s)e−2πi js
k

=(N/k)1/2

(
(1/
√

N)
N−1

∑
s=0

x̂(s)e−2πi d js
N

)
= d1/2 x( jd).

Substituting in (2) we get,

x(t) = (d/k)1/2
k−1

∑
j=0

x( jd)χ
∨
Ωk
(t + jd), 0≤ t ≤ N−1,

which completes the proof. �
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26 CARLOS CABRELLI

The uncertainty principle in CN . This principle asserts in general that a function cannot
be well localized in time and frequency. There is a version in CN of this principle:

Theorem 2. Let x ∈ CN , and denote by T = supp(x) and Ω = supp(x̂), then

|T ||Ω| ≥ N.

For the proof of (1) we need the following Lemma.

Lemma 1. Let x 6= 0 be a vector in `2(ZN), and s ∈ {1, . . . ,N}. If ‖x‖0 ≤ s, then x̂ cannot
have s consecutive zeros.

Proof. Let T ⊆{0, . . . ,N−1}, T = {t1, . . . , ts} and x∈ `2(ZN) with x j = 0 if j 6∈ T . Assume
that there exists `, 0≤ `≤ N−1 such that x̂(`) = x̂(`+1) = . . .= x̂(`+ s−1) = 0.

Let Ω = {`, . . . , `+ s−1} and FΩ,T = { 1√
N

e−2πinm/N} n∈Ω

m∈T
the submatrix of F in C|Ω|×|T |

with rows in Ω and columns in T . We have,
1) FΩ,T ∈ Cs×s.
2) FΩ,T x̃T = ˜̂xΩ, with x̃T = (xt1 , . . . ,xts) 6= 0 and ˜̂xΩ = (x̂`, . . . , x̂`+s−1) = 0.
3) FΩ,T is invertible.

To verify 3), we observe that the column j of FΩ,T is

1√
N
(e−2πi`t j/N , . . . ,e−2πi(`+s−1)t j)t =

1√
N

e−2πi`t j/N(1,e−2πit j/N , . . . ,(e−2πit j/N)s−1)t

=
1√
N

e−2πi`t j/N(1,wt j , . . . ,w
s−1
t j

)t ,

with wt j = e−2πit j/N .
So FΩ,T is a Vandermonde matrix [wt1 , . . . ,wts ] where each column has been multiplied

by a non-zero complex number.
Since the {wt j} are different roots of unity of order N, the corresponding Vandermonde

matrix is invertible and then FΩ,T is invertible. �

We will now prove Theorem 2.

Proof of Theorem 2. Let T = supp(x) and |T |= s. Assume first that N = sd for some integer
d. So

{0, . . . ,N−1}= {0, . . . ,s−1}∪{s, . . . ,2s−1}∪ . . .∪{(d−1)s, . . . ,(d−1)s+s−1}. (3)

Since x̂ cannot have s-consecutive zeros, there should be at least one j, for each of the sets
in (3) such that x̂( j) 6= 0. This implies that |Ω|= |supp(x̂)| ≥ d.

Since by hypothesis |T |= |supp(x)|= s, we have |Ω|.|T | ≥ d s = N.
This completes the proof in case N is a multiple of s. We leave as an exercise the general

case. �

THE HEART OF THE MATTER

Assume that x ∈ CN . We want to extract some information from x. That is, we will take
certain measurements of x. Each measurement will give us some partial information about
the vector x. We would like to perform enough measurements in order that the information
that we obtain be sufficient to reconstruct x.

On the other hand we want the number of measurements to be very small. And finally we
want the measurements not to depend on x, that is, we want to use the same measurements
for all the vectors that we are interested in.
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A SHORT INTRODUCTION TO COMPRESSIVE SENSING 27

Assume that each measurement is given by taking the product 〈a,x〉 = ∑
N
i=1 aixi, where

a is some vector in CN . So, in order to perform m measurements we will need m vectors,
a1, . . . ,am ∈ CN , m < N. Then we can write:

y1 = 〈a1,x〉,
...

ym = 〈am,x〉.
We want to recover x from the samples y1,y2, . . . ,ym.

If we collect the measurement vectors {a j}m
j=1 as rows of a matrix A ∈ Cm×N and y =

(y1, . . . ,ym) ∈ Cm, we can write in matrix notation

Ax = y. (4)

Here A and y are known and we want to find x from y = Ax. We assume that A is a full
rank matrix, since linear dependent measurements do not provide extra information.

If m ≥ N, the system is overdetermined and there exists a unique solution given by x =
(A∗A)−1A∗y.

So, the interesting case is when m < N.
Actually we are interested in the case where m� N.
When m < N, there are infinitely many solutions. Denote by S the set of solutions

S = {z ∈ CN : Az = Ax = y},
that is if z0 ∈ S then S = z0 +ker(A).

We see that since there are infinitely many solutions, we cannot determine x, unless we
assume some extra hypothesis on our vector x.

Sparsity. Let x ∈ CN , s ∈ N, s < N. We will say that x is s-sparse if ‖x‖0 ≤ s. We usually
will assume that s is very small compared with N. In other words, a vector is sparse if it has
a lot of zero components.

We will see in what follows that with the hypothesis of sparsity we can solve our system
(4) with certain conditions on the matrix A. That is, if we know that our x is s-sparse for
some s < N, we want to identify x out of all the solutions in the set S.

Basic conditions. Let A ∈ Cm×N be a measurement matrix, x ∈ CN an s-sparse vector,
y = Ax, y = (y1, . . . ,ym). Here 2s≤ m < N.

Clearly a necessary condition to recover x from y is that the map

φA : CN → Cm, φA(x) = Ax

is one to one on the set Σs of s-sparse vectors in CN .
(Note that Σs is not a subspace of CN , it is a finite union of subspaces.)
If φA is one to one on Σs then z = x is the unique s-sparse solution of the system Az = Ax.

Proposition 1. The following statements are equivalent:
i) φA is one to one on Σs.

ii) Σ2s∩ker(A) = {0}.
iii) Every choice of 2s columns of A are linearly independent.

Proof. i⇒ ii) If z ∈ Σ2s∩ker(A), then z = z1 + z2, z1,z2 ∈ Σs and 0 = Az = Az1 +Az2. So
Az1 = A(−z2) implies z1 =−z2, so z = z1 + z2 = 0.

ii⇒ i) Let z1,z2 be s-sparse and assume that Az1 = Az2. Then we have A(z1− z2) = 0
and z1− z2 ∈ Σ2s. Then z1− z2 must be zero, that is, z1 = z2.

We leave as an exercise for the reader the proof of ii⇐⇒ iii. �
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28 CARLOS CABRELLI

Assume now that the matrix A satisfies

ker(A)∩Σ2s = {0}. (5)

Then if x is s-sparse, it can theoretically be recovered from y.
So several questions arise.

1) Does there exist matrices A with the property that any choice of 2s columns are linearly
independent? This is true for example if A is a Vandermonde matrix. However it is a
very difficult problem to construct such matrices for very large values of N.

2) If A has property (5) and Ax = y, how can we find x from y? More exactly, which
algorithm can we use to recover x?
Let x ∈ CN , x = (x1, . . . ,xN) and supp(x) = T with |T |= s.
Denote by AT the submatrix of A with m rows and |T | columns (we only keep the columns

with indices in T ), and x̃T ∈ C|T | where we only keep the coordinates with indexes on T .
So we can write

Ax = AT x̃T = y.
Then xT = (A∗T AT )

−1A∗T y.
The problem is that we don’t know T . We only know that |T |= s.
Since φA is one to one on Σs, the system AT ′z = y does not have solutions for z ∈ Cs if

T 6= T ′ and |T ′|= s.
We have

(N
s

)
possible choices for T ′.

The algorithm consists in solving AT ′z = y for every choice of T ′ with |T ′| = s until we
reach the right T ′.

Clearly this algorithm reconstructs x, but it is computationally intractable for large values
of N!! (This is actually an NP-complete problem.)

The Null Space Property (NSP). We will impose now strong sufficient conditions on the
measurement matrix A in order to obtain computationally efficient algorithms to recover x
from y = Ax.

From now on we assume that the number of measurements m is at least the double of the
sparsity s, that is, we assume that m≥ 2s.

Definition 1.
1) Let A ∈Cm×N . We say that A satisfies the Null Space Property (NSP) of order s if for all

v ∈ ker(A), v 6= 0, we have that for all T ⊆ {1, . . . ,N}, |T | ≤ s, ‖vT‖1 < ‖vT c‖1.

Note that ‖vT‖1 < ‖vT c‖1 if and only if ‖vT‖1 <
1
2‖v‖1.

2) We will say that a matrix A ∈ Cm×N has the property “Ps” if for all x ∈ Σs, ‖x‖1 < ‖z‖1
if Az = Ax and z 6= x.

Note that property Ps says that the s-sparse vectors minimize the `1-norm between all
vectors z such that Az = Ax. In other words A has property Ps if and only if for all x ∈ Σs,
x = arg min{‖z‖1 : z ∈ x+ker(A)}.

Minimization of the `1-norm is computationally efficient since there exist convex opti-
mization algorithms that can be used.

The next question is now which matrices have property Ps? Do they exist at all? Can we
actually construct these matrices?

The next theorem comes to our help.
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A SHORT INTRODUCTION TO COMPRESSIVE SENSING 29

Theorem 3. Let m≥ 2s and A ∈ Cm×N . The following statements are equivalent.
i) A satisfies NSP of order s.

ii) A satisfies Ps.

Proof. i⇒ ii) Let x∈ Σs and T = supp(x). For z 6= x and Az=Ax we have that x−z∈ ker(A)
and x− z 6= 0, so

‖x‖1 ≤ ‖x− zT‖1 +‖zT‖1

= ‖(x− z)T‖1 +‖zT‖1

< ‖(x− z)T c‖1 +‖zT‖1

= ‖zT c‖1 +‖zT‖1

= ‖z‖1.

Note that we have proved that x is unique, that is, there is only one minimizer.
ii⇒ i) Let v ∈ ker(A) \ {0} and T ⊆ {1, . . . ,N} with |T | ≤ s. Write v = vT + vT c , then

0 = Av = AvT + AvT c , so AvT = −AvT c . Since vT ∈ Σs, using property Ps we have that
‖vT‖< ‖z‖ for all z such that AvT = Az and z 6= vT .

In particular ‖vT‖1 < ‖vT c‖1. (Note that vT 6= vT c unless v = 0.) �

Stability of the reconstruction. Now that we have an efficient method for the reconstruc-
tion, we want to know how it performs when our signal x is not sparse or it is contaminated
with noise. So we want to analyze the stability of the method.

Exercise: Let x ∈ CN , y = Ax and x] ∈ arg min{‖z‖1 : Az = Ax}. Prove that there always
exists a minimum.

Theorem 4. Let A ∈ Cm×N , s ∈ N such that 2s ≤ m < N. The following statements are
equivalent:

i) A satisfies NSP of order s.
ii) For all x ∈ CN , ‖x− x]‖1 ≤ cσs(x), where x] ∈ arg min{‖z‖1 : Az = Ax} and σs(x) =

inf{‖x− z‖1 : z ∈ Σs}= d1(x,Σs).

Proof. i⇒ ii) For every T ⊆ {1, . . . ,N}, |T | ≤ s, we have that ‖vT‖1 < 1
2 for every v ∈

ker(A)∩SN
1 with SN

1 = {x ∈ CN : ‖x‖1 = 1}, the sphere in CN of radius 1.
Since ker(A)∩SN

1 is compact, supv∈ker(A)∩SN
1
‖vT‖1 <

1
2 , and since there are finitely many

sets T with cardinality s in {1, . . . ,N},

c := 2 sup
|T |≤s

(
sup

v∈ker(A)∩SN
1

‖vT‖1

)
< 1.

Note that c = c(s,ker(A)).
Then, for every |T | ≤ s and v ∈ ker(A)\{0} we have

‖vT‖1

‖v‖1
≤ c

2
or ‖vT‖1 ≤

c
2
‖v‖1,

which we can write as

‖vT‖1 ≤
1
2
‖v‖1−

1− c
2
‖v‖1

and subtracting 1
2‖vT‖1 we get

1
2
‖vT‖1 ≤

1
2
‖vT c‖− 1− c

2
‖v‖1.
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30 CARLOS CABRELLI

Finally

‖vT‖1 ≤ ‖vT c‖1− (1− c)‖v‖1 for every v ∈ ker(A)\{0}, |T | ≤ s. (6)

Let now x ∈ CN , v ∈ ker(A), v := x− x] with

x] ∈ arg min{‖z‖1 : Az = Ax}, (7)

and choose T to be the indices corresponding to the coefficients of x of maximum absolute
value (i.e. if j ∈ T , j′ ∈ T c, then |x j| ≥ |x j′ |) and |T | ≤ s.

Note that since ‖x]‖1 ≤ ‖x‖1, using (7)

‖xT‖1 +‖xT c‖1 = ‖x‖1 ≥ ‖x]‖1 = ‖x− v‖1

= ‖(x− v)T‖1 +‖(x− v)T c‖1

= ‖xT − vT‖1 +‖xT c− vT c‖1

≥ ‖xT‖1−‖vT‖1 +‖vT c‖1−‖xT c‖1.

That is
‖vT c‖1 ≤ ‖vT‖1 +2‖xT c‖1 = ‖vT‖1 +2σs(x). (8)

Finally from (6) and (8)

‖v‖1 = ‖vT‖1 +‖vT c‖1

≤ (‖vT c‖1− (1− c)‖v‖1)+(‖vT‖1 +2σs(x))

= c‖v‖1 +2σs(x).

That is,

‖v‖1 ≤
2

1− c
σs(x)

for every x ∈ CN .
ii⇒ i) Assume that for every x ∈ CN

‖x− x]‖1 ≤ cσs(x) (9)

where x] ∈ arg min{‖z‖1 : Az = Ax}.
If x ∈ Σs then σs(x) = d(x,Σs) = 0.
So x = x] because of (9). Then A has the Ps property and then A satisfies the NSP of

order s. �

Robustness. Assume now that our measurements of x are contaminated with noise, that is,
we don’t know Ax; instead we have only an approximation y of Ax, that is,

‖y−Ax‖ ≤ ε.

for some norm in CN that doesn’t need to be specified. We want to see that the reconstruction
in that case is possible with an error that depends on ε and the sparsity.

That is, we want to have an inequality

‖x− x]‖1 < cε

for some constant c > 0 that does not depend on x, and x] ∈ arg min{‖z‖1 : ‖Az− y‖ ≤ ε}.
Using a stronger version of the NSP it is posible to get the desired result as we see in the

following theorem.
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A SHORT INTRODUCTION TO COMPRESSIVE SENSING 31

Theorem 5. Let A ∈ Cm×N and 1≤ s≤ N such that for every v ∈ CN and |T | ≤ s,

‖vT‖1 ≤ c‖vT c‖1 +d‖Av‖ (10)

for some norm ‖ ‖ in CN , for some 0 < c < 1 and d > 0. Then for every x ∈ CN such that
‖x‖0 ≤ s and for every y ∈ Cm such that ‖y−Ax‖ ≤ ε , we have

‖x− x]‖1 ≤ c1ε,

where c1 depends only on c and d, and x] ∈ arg min{‖z‖1 : ‖Az− y‖ ≤ ε}.

Proof. If v = x− x], then

‖Av‖= ‖Ax−Ax]‖ ≤ ‖Ax− y‖+‖y−Ax]‖ ≤ 2ε. (11)

Let T := supp(x). Using now the minimality of x]

‖x‖1 ≥ ‖x]‖1 = ‖(x− v)T‖1 +‖(x− v)T c‖1 ≥ ‖x‖1−‖vT‖1 +‖vT c‖1.

So ‖vT c‖1 ≤ ‖vT‖1 and using condition (10)

‖vT‖1 ≤ c‖vT c‖1 +d‖Av‖ ≤ c‖vT‖1 +d‖Av‖.

Using now (11) we have

‖vT‖1 ≤
2d

1− c
ε,

that is,

‖v‖1 = ‖vT‖1 +‖vT c‖1 ≤ 2‖vT‖1 ≤
4d

1− c
ε.

Setting c1 =
4d

1− c
and using that v = x− x] we have

‖x− x]‖1 ≤ c1ε. �

Application to vectors that are sparse in an orthonormal basis. So far we learned
that the exact condition in order that an s-sparse vector x can be reconstructed using `1-
minimization is that the measurement matrix A satisfy the NSP of order s.

Let us see how this can be applied to vectors that are not necessarily sparse but are sparse
in some orthonormal basis. That is, the method is still valid for a class of vectors that are
sparse in some fixed othonormal basis. Assume that f is s-sparse in some orthonormal basis
{ψ1, . . . ,ψN} of CN . So f = ∑

N
j=1 x jψ j with x = (x1, . . . ,xN) ∈ Σs.

Using matrix notation we can write f = Ψx, with Ψ = [ψ1|ψ2| . . . |ψN ] ∈ CN×N ; that is,
Ψ is the CN×N matrix whose columns are the vectors in the basis. The matrix Ψ is unitary,
then x = Ψ∗ f .

Let A∈Cm×N satisfying the NSP of order s. Define the matrix Φ= [ϕ1| . . . |ϕm], ϕ j ∈CN ,
j = 1, . . . ,N, by Φ = AΨ∗ ∈ Cm×N .

Then y := Φ f = AΨ∗ f = Ax. So we can solve y = Ax with s-sparse x and A satisfying the
NSP of order s. The solution will give us the coefficientes of f in the basis {ψ1, . . . ,ψN}.

COHERENCE OF A MATRIX

It seems at this point that the problem of recovering a vector x from a few measurements
is completely solved theoretically and complutationally with the NSP condition. However
it is not an easy task, when N is large, to find matrices with this property.

So we try to find stronger conditions on A that imply the NSP but actually allow the
construction of A. One of these conditions is given by the notion of “coherence” of a matrix.
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Definition 2. Let A ∈ Cm×N be a matrix with normalized columns with respect to the `2-
norm:

A = [a1| . . . |aN ], a j = (a j1, . . . ,a jm)
t and ‖a j‖2 = 1, j = 1, . . . ,N.

We define µ(A), the coherence of A, as

µ(A) = max
i6= j
|〈ai,a j〉|.

It can be proved that √
N−m

m(N−1)
≤ µ(A)≤ 1

for every A ∈ Cm×N with normalized columns.
For our purposes we want matrices with low coherence.

Theorem 6. Let A ∈Cm×N be a matrix with `2-normalized columns. If µ(A)<
1

2s−1
then

A satisfies the NSP of order s.

Proof. Let A = [a1| . . . |aN ] with a j ∈ Cm and ‖a j‖2 = 1, j = 1, . . . ,N. Let v ∈ ker(A),
v = {v1, . . . ,vN}, T ⊆ {1, . . . ,N}, |T | ≤ s. So ∑

N
j=1 v ja j = 0, and for every k

0 = 〈
N

∑
j=1

v ja j,ak〉= vk + ∑
j 6=k

v j〈a j,ak〉.

So
|vk| ≤ ∑

j 6=k
|v j|µ(A) = (‖v‖1− vk)µ(A).

Now, summing over k ∈ T

‖vT‖1 ≤ (s‖v‖1−‖vT‖1)µ(A),

which gives

‖vT‖1 ≤ ‖v‖1
µ(A)

1+µ(A)
s.

Then if
µ(A)

1+µ(A)
s < 1

2 , A satisfies the NSP of order s. This inequality is equivalent to

µ(A)<
1

2s−1
. �

THE RESTRICTED ISOMETRY PROPERTY (RIP)

Another sufficient condition for the NSP is the Restricted Isometry Property. Let us begin
with a definition:

Definition 3. Let A ∈ Cm×N , 1≤ s≤ N. Let δs = δs(A) be the smallest δ ≥ 0 such that

(1−δ )‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1+δ )‖x‖2
2

for all x ∈ Σs.
An equivalent definition for δs(A) is,

δs(A) = max
T⊆{1,...,N}
|T |≤s

‖A∗T AT − I‖2→2

We will say loosely that A satisfies the RIP of order s if δs is “small” when s is “reason-
ably big”.
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Note that δ1 ≤ δ2 ≤ . . .≤ δN .

Theorem 7. Let A ∈ Cm×N , 1≤ s≤ N. If δ2s <
1
3 , then A satisfies the NSP of order s.

Proof. We need to prove that:

for all v ∈ ker(A), v 6= 0, and for all T ⊆ {1, . . . ,N}, |T | ≤ s, ‖vT‖1 <
1
2
‖v‖1.

We will actually prove a stronger statement:

for every v ∈ ker(A)\{0} and T ⊆ {1, . . . ,N} with |T | ≤ s, ‖vT‖2 ≤
β

2
√

s
‖v‖1, (12)

where β :=
2δ2s

1−δ2s
satisfies β < 1 iff δ2s <

1
3 .

Fix v ∈ ker(A) \ {0}. We choose T0 ⊆ {1, . . . ,N} such that |vi| ≥ |v j| for every i ∈ T0,
j ∈ T c

0 . Since ‖vT‖2 ≤ ‖vT0‖2 for every T ⊆ {1, . . . ,N} we only need to prove (12) for
T = T0.

We now partition T c
0 as T c

0 = T1∪T2∪ . . ., where Tj is the index set corresponding to the s
largest absolute value entries of (T0∪T1∪ . . .∪Tj−1)

c. So v = vT0 +vT1 +vT2 + . . . and using
that v ∈ ker(A)

AvT0 = A(−vT1)+A(−vT2)+ . . .

so that

‖vT0‖2
2 ≤

1
1−δ2s

‖AvT0‖2
2 =

1
1−δ2s

〈AvT0 ,AvT0〉=
1

1−δ2s
∑
k≥1
〈AvT0 ,−AvTk〉. (13)

Now we use that if u,w are vectors in CN of sparsity at most s and supp(u)∩supp(w) = /0
then |〈Au,Aw〉| ≤ δ2s‖u‖2‖w‖2. For, if T = supp(u)∪ supp(w), we have

|〈Au,Av〉|= |〈AuT ,AwT 〉−〈uT ,wT 〉|
= |〈(A∗T AT − I)uT ,wT 〉|
≤ ‖(A∗T AT − I)uT‖2‖wT‖2

≤ ‖A∗T AT − I‖2→2‖u‖2‖w‖2

≤ δ2s‖u‖2‖w‖2.

Using this property in each term of (13) and dividing by ‖vT0‖2 > 0 we have

‖vT0‖2 ≤
δ2s

1−δ2s
∑
k≥1
‖vTk‖2 =

β

2 ∑
k≥1
‖vTk‖2. (14)

Since

‖vTk‖2√
s
≤

(
1
s ∑

j∈Tk

|v j|2
)1/2

≤max
j∈Tk
|v j|

≤ min
j∈Tk−1

|v j| ≤
1
s ∑

j∈Tk−1

|v j|,

that is,

‖vTk‖2 ≤
1√
s
‖vTk−1‖1.

Substituting in (14) we have

‖vT0‖2 ≤
β

2
√

s ∑
k≥1
‖vTk−1‖1 ≤

β

2
√

s
‖v‖1. �
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