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THE ONE-SIDED DYADIC HARDY-LITTLEWOOD MAXIMAL FUNCTION

MARÍA LORENTE AND FRANCISCO J. MARTÍN-REYES

ABSTRACT. The problem of characterizing the good weights for the one-sided Hardy-
Littlewood maximal operator M++···+ in Rn is open. In order to tackle this problem one
possible strategy is the following: (1) define a one-sided dyadic maximal operator M++···+

d
with similar properties to the classical dyadic maximal operator Md , (2) study the weighted
inequalities for this one-sided dyadic maximal operator, and (3) control M++···+ (in some
sense) by M++···+

d . This paper is a review of what we know about this issue.

This paper is essentially the talk given by the second author in the Conference “XII
Congreso Dr. Antonio Monteiro”, Bahía Blanca, May 22-24, 2013, and it is based on the
paper [5] and joint work by both authors.

1. THE HARDY-LITTLEWOOD MAXIMAL OPERATOR AND THE DYADIC MAXIMAL
OPERATOR: WEIGHTED INEQUALITIES

For a locally integrable function f on Rn, the Hardy-Littlewood maximal function is
defined as

M f (x) = sup
x∈Q

1
|Q|

∫
Q
| f (y)|dy ,

where the supremum is taken over all the cubes Q (with sides parallel to the axes) such that
x ∈ Q and |Q| stands for the measure of Q. It is well known that M controls in some sense
the behavior of other operators such as the Hilbert transform

H f (x) =
∫
R

f (y)
x− y

dy

and more general singular integrals. Therefore, it is interesting to know the boundedness
properties of M. The basic properties are the following: M maps Lp(Rn) into Lp(Rn),
1< p≤+∞, and L1(Rn) into L1,∞(Rn) (weak-L1(Rn)). If one considers weighted Lebesgue
spaces it is natural to study the boundedness of the maximal operator M on these spaces. Let
us define the spaces we are talking about. A weight v is a nonnegative measurable function
defined on Rn and the corresponding weighted-Lp space is

Lp(v) =

{
f : Rn→ R : || f ||Lp(v) =

(∫
Rn
| f |pv

)1/p

< ∞

}
.

Muckenhoupt and Sawyer characterized the good weights for M.

Theorem 1.1 ([8, 10]). Let 1 < p < ∞ and let u,v be weights on Rn. The following state-
ments are equivalent.
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(a) There exists C > 0 such that for all f ∈ Lp(v),∫
Rn
(M f (x))pu(x)dx≤C

∫
Rn
| f (x)|pv(x)dx.

(b) (Sawyer Sp Condition) There exists C > 0 such that∫
Q
(M(σ χQ)(x))pu(x)dx≤C

∫
Q

σ(x)dx < ∞ ,

for all cubes Q, where σ = v1−p′ and p+ p′ = pp′.

Furthermore, if u = v then the above statements are equivalent to

(c) (Muckenhoupt Ap condition) There exists C > 0 such that for all cubes Q(
1
|Q|

∫
Q

u
)1/p( 1

|Q|

∫
Q

u1−p′
)1/p′

≤C .

Let us comment briefly the proof of Sawyer’s result, that is, the equivalence between (a)
and (b). The implication (a)⇒(b) is straightforward. Therefore, all we have to review is the
proof of (b)⇒(a). The main ingredients are the following.

(1) Sawyer solves the same problem for the dyadic maximal operator which is defined
as

Md f (x) = sup
x∈Q, Qdyadic

1
|Q|

∫
Q
| f (y)|dy,

where the supremum is taken over all the dyadic cubes Q with x ∈ Q. He proves
that Md applies Lp(v) into Lp(u) if and only if the pair (u,v) satisfies Sp,d condition,
that is, there exists C > 0 such that∫

Q
(Md(σ χQ)(x))pu(x)dx≤C

∫
Q

σ(x)dx < ∞

for all dyadic cubes Q.

(2) The Hardy-Littlewood maximal operator is controlled in a certain sense by the
dyadic maximal operator. This is a result by Fefferman and Stein [3] and it says
that

Mk f (x)≤ Cn

|Q(0,2k+2)|

∫
Q(0,2k+2)

(τ−t ◦Md ◦ τt) f (x)dt,

where τtg(x) = g(x− t),

Q(0,2k+2) = {x = (x1, . . . ,xn) ∈ Rn : |x|∞ = max
i
|xi| ≤ 2k+1},

and Mk is the truncated maximal operator

Mk f (x) = sup
x∈Q,`(Q)≤2k

1
|Q|

∫
Q
| f (y)|dy,

where the supremum is taken over all cubes Q with side length smaller than or equal
to 2k and x ∈ Q.

(3) The pair of weights (u,v) satisfies Sp condition if and only if for all t ∈ Rn the pair
of weights (τt ◦u,τt ◦ v) satisfies Sp,d condition with a constant independent of t.
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2. THE ONE-SIDED SETTING

2.1. The one-sided Hardy-Littlewood maximal function in dimension 1. For a locally
integrable function f on R, the one-sided Hardy-Littlewood maximal functions are defined
as

M+ f (x) = sup
h>0

1
h

∫ x+h

x
| f (y)|dy and M− f (x) = sup

h>0

1
h

∫ x

x−h
| f (y)|dy.

These maximal functions control singular integrals whose kernels have support in (−∞,0)
or in (0,∞) (see [1]). Sawyer [11] characterized the good weights for these operators (see
also [6, 2]).

Theorem 2.1 ([11]). Let 1 < p < ∞ and let u,v be weights on Rn. The following are
equivalent:

(a) There exists C > 0 such that for all f ∈ Lp(v)∫
R
(M+ f (x))pu(x)dx≤C

∫
R
| f (x)|pv(x)dx.

(b) (S+p Condition) There exists C > 0 such that∫
I
(M+(σ χI)(x))pu(x)dx≤C

∫
I
σ(x)dx < ∞

for all intervals I = (a,b) such that
∫ a
−∞

u(x)dx > 0, where σ = v1−p′ and p+ p′ =
pp′.

Furthermore, if u = v then the above statements are equivalent to
(c) (A+

p condition) There exists C > 0 such that for all b ∈ R and all h > 0

1
h

(∫ b

b−h
u
)1/p(∫ b+h

b
u1−p′

)1/p′

≤C.

2.2. The one-sided Hardy-Littlewood maximal function in dimension n > 1. A natural
generalization of M+ in Rn is the following: for x = (x1,x2, . . . ,xn) ∈ Rn, we define

M++···+ f (x1,x2, . . . ,xn) = sup
h>0

1
hn

∫
Qx(h)
| f (y)|dy ,

where Qx(h) = [x1,x1 + h)× [x2,x2 + h)×·· ·× [xn,xn + h). Let us notice that in Rn there
are 2n one-sided maximal operators of this kind. The weighted inequalities for M++···+ in
Rn have not been characterized. The only positive result is the characterization of the good
weights for the weak type (p, p) inequality of M++ in dimension n = 2 (see [4]).

Theorem 2.2 ([4]). Let 1 < p < ∞ and let u,v be weights on R2. The following are equiva-
lent:

(a) There exists C > 0 such that for all λ > 0 and all f ∈ Lp(v)∫
{x∈R2:M++ f (x)>λ}

u(x)dx≤ C
λ p

∫
R2
| f (x)|pv(x)dx .

(b) (A++
p condition in R2)

sup
x∈R2

sup
h>0

1
h2

(∫
Q−x (h)

u
)1/p(∫

Qx(h)
v1−p′

)1/p′

< ∞ ,

where Q−x (h) = [x1−h,x1)× [x2−h,x2) (see the next figure).
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For p = 1 the result holds with A++
1 meaning that there exists C > 0 such that for all

h > 0
1
h2

∫
Q−x (h)

u≤Cv(x) a.e. x = (x1,x2).

As we have noted, the problem of characterizing the good weights for M++···+ in Rn is
open. In order to tackle this problem, keeping in mind the proofs of the two-sided Hardy-
Littlewood maximal operator in Rn, we consider the following possible strategy:

• Step 1: Define a one-sided dyadic maximal operator M++···+
d with properties similar

to the classical dyadic operator Md .

• Step 2: Study the weighted inequalities for this one-sided dyadic maximal operator.

• Step 3: Control M++···+ by averages of τ−t ◦M++···+
d ◦ τt .

The rest of the paper is devoted to present the progress we have made.

3. ONE-SIDED DYADIC MAXIMAL OPERATORS

We note that a one-sided dyadic maximal operator was previously studied in dimension 1.
Consider in the real line the one-sided operator

N+ f (x) = sup
x∈I, I dyadic

1
|I∗|

∫
I∗
| f (y)|dy,

where the supremum is taken over all dyadic intervals I such that x ∈ I and if I = [a,a+h)
then I∗ = [a+ h,a+ 2h). Note that I ∪ I∗ is not necessarily dyadic. This operator was
studied in [7]; it was proved there that N+ is pointwise equivalent to M+. This fact was
useful to study one-sided fractional maximal functions and, consequently, to study one-
sided fractional integrals (Riemann-Liouville and Weyl fractional integrals).

Ombrosi [9] generalized this operator to Rn, n > 1, defining

N+···+ f (x) = sup
x∈Q, Q dyadic

1
|Q∗|

∫
Q∗
| f (y)|dy,

where Q is dyadic and Q∗ = Q+
−→
h ,
−→
h = (l, . . . , l), and l is the side length of Q (see the

next figure).
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Weighted weak type inequalities were studied in [9]. We point out that this dyadic op-
erator does not satisfy the inequality N+···+ f ≤CMd f for some constant independent of f ,
being Md the classical dyadic maximal operator defined in Section 1. We think that a good
one-sided dyadic maximal operator M+···+

d should satisfy

M+···+
d f ≤CMd f and M+···+

d f ≤CM+···+ f .

Furthermore it should control in some sense the (non-dyadic) one-sided maximal opera-
tor M+···+. In R (dimension 1) we have succeeded in defining one-sided dyadic maximal
operators with these properties. They are defined as follows:

M+
d f (x) = sup

I dyadic, x∈I−,

1
|I+|

∫
I+
| f (y)|dy

and
M−d f (x) = sup

I dyadic, x∈I+,

1
|I−|

∫
I−
| f (y)|dy,

where I− and I+ are the two halves of I (note that now I = I−∪ I+ is dyadic). It is clear that

M+
d f ,M−d f ≤ 2Md f , Md f ≤M+

d f +M−d f , M+
d f ,M−d f ≤ 2M+ f .

Furthermore, if for all k ∈ Z we consider the truncated operators

N+
k f (x) = sup

0<h≤2k

1
h

∫ x+2h

x+h
| f (y)|dy, M+

k f (x) = sup
0<h≤2k

1
h

∫ x+h

x
| f (y)|dy,

then we have (see [5]) that

M+
k f (x)≤CN+

k f (x)≤ C
2k+4

∫ 2k+4

0
(τ−t ◦M+

d ◦ τt) f (x)dt,

where τt f (x) = f (x− t). All the above inequalities mean that M+
d seems to be the good

candidate for the dyadic one-sided maximal operator. In the same paper [5] we have char-
acterized the good weights for M+

d .

Theorem 3.1 ([5]). Let 1 < p < ∞, u,v ≥ 0, σ = v1−p′ . The following statements are
equivalent.

(a) There exists C > 0 such that for all f ∈ Lp(v)∫
R
(M+

d f (x))pu(x)dx≤C
∫
R
| f (x)|pv(x)dx.

(b) (S+p,d condition ) There exists C > 0 such that∫
I
(M+

d (σ χI+)(x))
pu(x)dx≤C

∫
I+

σ(x)dx < ∞,

for all dyadic intervals I such that
∫

I− u > 0.
Furthermore, if u = v then the above statements are equivalent to
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(c) (A+
p,d condition) There exists C > 0 such that(∫

I−
u
)1/p(∫

I+
u1−p′

)1/p′

≤C|I|

for all dyadic intervals I.

We have also proved in [5] that if we consider different weights u and v then the A+
p,d

condition (∫
I−

u
)1/p(∫

I+
v1−p′

)1/p′

≤C|I|

characterizes the weak type (p, p) inequality. In the case p = 1 the condition is replaced by
the natural one.

As a consequence of these results, we obtain a new proof of the characterizations of the
good weights for M+ in R.

In the next section we search for some generalization of M+
d to greater dimensions.

4. THE DYADIC ONE-SIDED HARDY-LITTLEWOOD MAXIMAL FUNCTION IN
DIMENSION GREATER THAN 1

We shall work in R2 but everything we are going to say is valid in Rn for all n≥ 1.
The first candidate for the one-sided dyadic maximal operator is the following one:

M++
d f (x) = sup

Q dyadic, x∈Q−

1
|Q+|

∫
Q+
| f (y)|dy,

where if Q = Qx(2h) is dyadic then Q− is the cube Qx(h) and Q+ = Q−+(h,h) (see the
next figure and observe that Q− and Q+ are also dyadic cubes).

Note that
• this operator generalizes the operator M+

d defined in R (n = 1),
• it satisfies M++

d f ≤CMd f and M++
d f ≤CM++ f ,

• but we have not been able to control the truncations of M++ by averages of τ−t ◦
M++

d ◦ τt f .
Nevertheless, we can consider different one-sided dyadic maximal operators. Before

stating the definition, we remind that the one-sided Hardy-Littlewood maximal function in
R2 is defined as

M++ f (x) = sup
0<h

1
h2

∫
Qx(h)
| f (y)|dy .
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If we take the maximal operator

N++ f (x) = sup
0<h

1
3h2

∫
Lx(h)
| f (y)|dy,

where Lx(h) = Qx(2h)\Qx(h) (see the next figure), we observe that N+ is pointwise equiv-
alent to M++.

This fact suggests the following definition.

Definition 4.1. For a locally integrable function f we define the following dyadic one-sided
Hardy-Littlewood maximal operator.

M̃++
d f (x) = sup

Q dyadic, x∈Q−

1
|LQ|

∫
LQ

| f (y)|dy,

where LQ = Q\Q−.

We point out the following properties.
(i) This operator generalizes the operator M+

d defined in R (n = 1).

(ii) We are able to control the truncations of M++ by averages of τ−t ◦M̃++
d ◦τt f . More

precisely, if

N++
k f (x) = sup

0<h≤2k

1
3h2

∫
Lx(h)
| f (y)|dy

and
M++

k f (x) = sup
0<h≤2k

1
h2

∫
Qx(h)
| f (y)|dy

then we have that

M++
k f (x)≤CN++

k f (x) ≤ C
(2k+4)2

∫
(0,2k+4]×(0,2k+4]

(τ−t ◦ M̃++
d ◦ τt) f (x)dt .

(iii) It satisfies M̃++
d f ≤CMd f for some constant independent of f .
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(iv) However, it has a serious downside: it does not satisfy M̃++
d f ≤ CM++ f with a

constant independent of f .

Property (ii) implies that if we know the good weights for M̃++
d we can obtain some good

weights for M++. We are able to characterize the weights for M̃++
d .

Theorem 4.2. Let 1 < p < ∞ and let u and v be two weights. The following are equivalent.

(a) There exists C > 0 such that for all f ∈ Lp(v)∫
R2
(M̃++

d f (x))pu(x)dx≤C
∫
R2
| f (x)|pv(x)dx.

(b) There exists C > 0 such that∫
Q
(M̃++

d (σ χLQ)(x))
pu(x)dx≤C

∫
LQ

σ(x)dx < ∞

for all dyadic cubes Q with
∫

Q− u > 0.

Furthermore, if u = v then the above conditions are equivalent to (c).

(c) There exists C > 0 such that for all dyadic cubes Q,

1
|Q|

(∫
Q−

u
)1/p(∫

LQ

u1−p′
)1/p′

≤C .

This result together with property (b) allows us to prove the following sufficient condition
for the boundedness of M++.

Theorem 4.3. Let1 < p < ∞ and let u be a weight. If u satisfies (A)+p , that is,

sup
x∈R2

sup
h>0

1
h2

(∫
Qx(h)

u
)1/p(∫

Lx(h)
u1−p′

)1/p′

< ∞

then there exists C > 0 such that for all f ∈ Lp(u),∫
R2
(M++ f (x))pu(x)dx≤C

∫
R2
| f (x)|pu(x)dx.

We shall say that u satisfies (A)+1 if there exists C > 0 such that for all cubes Q,

1
|Q−|

∫
Q−

u≤Cu(x), a.e. x ∈ LQ.

It is very easy to see that (A)+1 ⊂ (A)+p .

Now, consider the maximal operator

M̃−− f (x) = sup
Q cube : x∈LQ

1
|Q−|

∫
Q−
| f |

defined on locally integrable functions f . As usual, we are able to prove that

M̃−− f < ∞ a.e. 0 < δ < 1 =⇒ (M̃−− f )δ ∈ (A)+1 .

This implication provides nontrivial examples of good weights for the operator M++. The
results of this section will appear elsewhere.
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