INEQUALITIES FOR ONE-SIDED OPERATORS IN ORLICZ SPACES

SERGIO J. FAVIER AND SONIA E. ACINAS

ABSTRACT. In this paper, we get strong type inequalities for one-sided maximal best approximation operators \mathscr{M}^{\pm} which are very related to one-sided Hardy-Littlewood maximal functions M^{\pm} . In order to obtain our results, strong and weak type inequalities for M^{\pm} are considered.

1. INTRODUCTION

We denote by \mathscr{I} the set of functions $\varphi : \mathbb{R} \to \mathbb{R}$ which are nonnegative, even, nondecreasing on $[0,\infty)$, such that $\varphi(t) > 0$ for all t > 0, $\varphi(0+) = 0$ and $\lim \varphi(t) = \infty$.

We say that a nondecreasing function $\varphi : \mathbb{R}_0^+ \to \mathbb{R}_0^+$ satisfies the Δ_2 condition, symbolically $\varphi \in \Delta_2$, if there exists a constant $\Lambda_{\varphi} > 0$ such that $\varphi(2a) \leq \Lambda_{\varphi}\varphi(a)$ for all $a \geq 0$.

An even and convex function $\Phi : \mathbb{R} \to \mathbb{R}_0^+$ such that $\Phi(a) = 0$ iff a = 0 is said to be a Young function. Unless stated otherwise, the Young function Φ is the one given by $\Phi(x) = \int_0^x \varphi(t) dt$, where $\varphi : \mathbb{R}_0^+ \to \mathbb{R}_0^+$ is the right-continuous derivative of Φ .

If $\varphi \in \mathscr{I}$, we define $L^{\varphi}(\mathbb{R}^n)$ as the class of all Lebesgue measurable functions f defined on \mathbb{R}^n such that $\int_{\mathbb{R}^n} \varphi(t|f|) dx < \infty$ for some t > 0 and where dx denotes the Lebesgue measure on \mathbb{R}^n . If φ is a Young function, then $L^{\varphi}(\mathbb{R}^n)$ is an Orlicz space (see [12]).

In the case of Φ being a Young function such that $\Phi \in \Delta_2$, then $L^{\Phi}(\mathbb{R}^n)$ is the space of all measurable functions f defined on \mathbb{R}^n such that $\int_{\mathbb{R}^n} \Phi(|f|) dx < \infty$.

Also note that if $\Phi \in C^1 \cap \Delta_2$ such that $\Phi(2a) \leq \Lambda_{\Phi} \Phi(a)$ for all a > 0, then its derivative function φ satisfies the Δ_2 condition and

$$\frac{1}{2}(\varphi(a) + \varphi(b)) \le \varphi(a+b) \le \frac{\Lambda_{\Phi}^2}{2}(\varphi(a) + \varphi(b)), \tag{1}$$

for every $a, b \ge 0$.

A nondecreasing function $\varphi : \mathbb{R}_0^+ \to \mathbb{R}_0^+$ satisfies the ∇_2 condition, denoted $\varphi \in \nabla_2$, if there exists a constant $\lambda_{\varphi} > 2$ such that $\varphi(2a) \ge \lambda_{\varphi}\varphi(a)$ for all $a \ge 0$.

For $f \in L^1_{loc}(\mathbb{R}^n)$, the classical Hardy-Littlewood maximal function *M* defined over cubes $Q \subset \mathbb{R}^n$ is given by the formula

$$M(f)(x) = \sup_{x \in Q} \frac{1}{|Q|} \int_Q |f(t)| dt.$$

For $f \in L^1_{loc}(\mathbb{R})$, the one-sided Hardy-Littlewood maximal functions M^+ and M^- are introduced in [5] as follows:

$$M^+f(x) = \sup_{h>0} \frac{1}{h} \int_x^{x+h} |f(y)| \, dy, \quad \text{with } x \in \mathbb{R},$$

and

$$M^{-}f(x) = \sup_{h>0} \frac{1}{h} \int_{x-h}^{x} |f(y)| \, dy, \quad \text{with } x \in \mathbb{R}.$$

2010 Mathematics Subject Classification. Primary: 42B25. Secondary: 41A44, 46E30.

This research was partially supported by CONICET and UNSL grants.

For the sake of simplicity, in the sequel we write M^{\pm} to refer to M^{+} or M^{-} .

It is well known that M is homogeneous, subadditive, weak type (1,1) and it also satisfies $||Mf||_{\infty} \leq ||f||_{\infty}$. The one-sided maximal functions M^{\pm} are also homogeneous, subadditive, weak type (1,1) (see [5]) and strong type (∞,∞) . In addition, M may be defined from the one-sided maximal functions as follows

$$Mf(x) = \max\{M^+ f(x), M^- f(x)\}.$$
(2)

In fact,

$$\frac{1}{s+t} \int_{x-s}^{x+t} |f(y)| \, dy \le \frac{s}{s+t} M^- f(x) + \frac{t}{t+s} M^+ f(x) \le \max\{M^- f(x), M^+ f(x)\}.$$

Now, taking supremum over all s, t > 0, we have

$$Mf(x) \le \max\{M^{-}f(x), M^{+}f(x)\}.$$

On the other hand,

$$Mf(x) = \sup_{s,t>0} \frac{1}{s+t} \int_{x-s}^{x+t} |f(u)| \, du \ge \sup_{s,t>0} \frac{1}{s+t} \int_{x-s}^{x} |f(u)| \, du = M^{-}f(x).$$

Similarly, we have $Mf(x) \ge M^+f(x)$. Therefore

$$Mf(x) \ge \max\{M^+f(x), M^-f(x)\}.$$

In [1] and [6], weak and strong type inequalities for M in Orlicz spaces were obtained. The one-sided weighted maximal operator on \mathbb{R} in L^p spaces was studied by Sawyer [13], Martín-Reyes, Ortega Salvador and de la Torre [8], and Martín-Reyes [7]. The weighted Orlicz space case was treated in Ortega Salvador [10] assuming the reflexivity of the space. Kokilashvili and Krbec in [6], based on Ortega Salvador [10] and Ortega Salvador and Pick [11], removed the restriction to reflexive spaces and weakened some hypothesis.

In this paper, we follow the idea of Kokilashvili and Krbec in [6] for one-sided maximal functions on \mathbb{R} without dealing with weight functions. Namely, we specify conditions on $\varphi \in \mathscr{I}$ under which the weak type inequalities

$$|\{x \in \mathbb{R} : M^{\pm}(f)(x) > \lambda\}| \le \frac{c_1}{\varphi(\lambda)} \int_{\mathbb{R}} \varphi(c_1 f(x)) \, dx,\tag{3}$$

and

$$|\{x \in \mathbb{R} : M^{\pm}f(x) > \lambda\}| \le c_2 \int_{\mathbb{R}} \varphi\left(\frac{c_2 f(x)}{\lambda}\right) dx, \tag{4}$$

hold for all $\lambda > 0$ and where $f \in L^1_{loc}(\mathbb{R})$. We also characterize the strong type inequality

$$\int_{\mathbb{R}} \varphi(M^{\pm}f(x)) \, dx \le c \int_{\mathbb{R}} \varphi(cf(x)) \, dx, \tag{5}$$

for all $f \in L^1_{\text{loc}}(\mathbb{R})$.

It is worth mentioning that inequalities (3), (4) and (5) are particular cases of results given in [6]; however, as we do not deal with weight functions, we include easier proofs.

Then, we get conditions to assure the validity of strong type inequalities like (5) for onesided maximal operators \mathscr{M}^{\pm} , related to one-sided best φ -approximation by constants to a function $f \in L^{\varphi}_{loc}(\mathbb{R})$.

Last, we get strong type inequalities for lateral maximal operators M_p^{\pm} related to *p*-averages.

2. Weak type inequalities for M^{\pm}

The next concept is introduced in [6] and we will employ it to set conditions under which (3) and (4) are valid.

Definition 1. A function $\varphi : [0,\infty) \to \mathbb{R}$ is quasiconvex on $[0,\infty)$ if there exist a convex function ω and a constant c > 0 such that

$$\boldsymbol{\omega}(t) \leq \boldsymbol{\varphi}(t) \leq c \boldsymbol{\omega}(ct),$$

for all $t \in [0,\infty)$.

2.1. Necessary and sufficient condition. Lemma 1.2.4 in [6] establishes the equivalence between the validity of a weak type inequality like (3) for M over \mathbb{R}^n and the quasiconvexity of φ . Theorem 2.4.1 in [6] states an analogous equivalence for M^{\pm} over \mathbb{R} employing weight functions. The next result is a particular case of this theorem; nevertheless, as we deal without using weights, we include an easier proof.

Theorem 2. Let $\varphi \in \mathscr{I}$. φ is quasiconvex if and only if there exists $c_1 > 0$ such that

$$|\{x \in \mathbb{R} : M^{\pm}f(x) > \lambda\}| \le \frac{c_1}{\varphi(\lambda)} \int_{\mathbb{R}} \varphi(c_1 f(x)) dx, \tag{6}$$

for all $\lambda > 0$ and for all $f \in L^1_{loc}(\mathbb{R})$.

Proof. \Rightarrow) Let $\varphi \in \mathscr{I}$ be a quasiconvex function. By Lemma 1.2.4 in [6], there exists $c_1 > 0$ such that

$$|\{x \in \mathbb{R} : Mf(x) > \lambda\}| \le \frac{c_1}{\varphi(\lambda)} \int_{\mathbb{R}} \varphi(c_1 f(x)) \, dx,\tag{7}$$

for all $\lambda > 0$ and for all $f \in L^1_{loc}(\mathbb{R})$. From (2) and the monotonicity of Lebesgue measure, we have

$$|\{x \in \mathbb{R} : M^{\pm}f(x) > \lambda\}| \le |\{x \in \mathbb{R} : Mf(x) > \lambda\}|.$$
(8)

Now, by (7) and (8), we get (6).

 \Leftarrow) We will prove the statement for M^+ reasoning as in the proof of Theorem 2.4.1 in [6]. The same argument with a slight modification is also valid for the case of M^- .

Let a < b < c and assume $\int_{b}^{c} |f(u)| du \neq 0$. If $x \in (a,b)$ there exists h > 0 such that $(x,x+h) \supset (b,c)$ and x+h=c, then h < c-a and

$$\chi_{(a,b)}(x)\frac{1}{c-a}\int_{b}^{c}|f(u)|\,du < \frac{1}{h}\int_{b}^{c}|f(u)|\,du \le \frac{1}{h}\int_{x}^{x+h}|f(u)|\,du.$$

Therefore, if $x \in (a, b)$ then

$$\frac{1}{c-a} \int_{b}^{c} |f(u)| \, du < M^{+}f(x). \tag{9}$$

On the other hand, if $x \notin (a, b)$ then

$$\chi_{(a,b)}(x)\frac{1}{c-a}\int_{b}^{c}|f(u)|\,du \le M^{+}f(x),\tag{10}$$

as $M^{\pm}f(x) \ge 0$. Eventually, from (9) and (10),

$$M^+f(x) \ge \chi_{(a,b)}(x) \frac{1}{c-a} \int_b^c |f(u)| du$$
 for all $x \in \mathbb{R}$.

Let $\lambda = \frac{1}{c-a} \int_{b}^{c} |f(u)| du > 0$. By (6), there exists $c_1 > 0$ such that

$$\left|\left\{x \in \mathbb{R} : M^+f(x) > \frac{1}{c-a} \int_b^c |f(u)| \, du\right\}\right| \varphi\left(\frac{1}{c-a} \int_b^c |f(u)| \, du\right) \le c_1 \int_{\mathbb{R}} \varphi(c_1 f(x)) \, dx.$$

From (9) we have

$$(b-a) \leq \left|\left\{x \in \mathbb{R} : M^+f(x) > \frac{1}{c-a} \int_b^c |f(u)| \, du\right\}\right|,$$

then there exists $c_1 > 0$ such that

$$(b-a)\varphi\left(\frac{1}{c-a}\int_{b}^{c}|f(u)|\,du\right) \le c_1\int_{b}^{c}\varphi(c_1f(x))\,dx + c_1\int_{\mathbb{R}^{-}(b,c)}\varphi(c_1f(x))\,dx,$$

for all $f \in L^1_{loc}(\mathbb{R})$ provided that $\int_b^c |f(u)| du \neq 0$. Now, let $f(x) = f(x)\chi_{(b,c)}(x)$, then there exists $c_1 > 0$ such that

$$(b-a)\varphi\left(\frac{1}{c-a}\int_{b}^{c}|f(u)|\,du\right) \le c_1\int_{b}^{c}\varphi(c_1f(x))\,dx,\tag{11}$$

with $f \in L^1_{\text{loc}}(\mathbb{R})$ such that $\int_b^c |f(u)| du \neq 0$.

In case of $\int_{b}^{c} |f(u)| du = 0$, (11) holds trivially.

Let c > 1 and a < b < c such that b - a = c - b. Let $t_1, t_2 > 0$ and $\theta \in (0, 1)$. We decompose (b, c) into two disjoint sets F and F' such that $(b, c) = F \cup F'$, $|F| = \theta(c - b)$ and $|F'| = (1 - \theta)(c - b)$. Let $h(x) = t_1 \chi_F(x) + t_2 \chi_{F'}(x)$ for $x \in (b, c)$, then

$$\frac{1}{c-a} \int_{b}^{c} |h(x)| \, dx = \frac{1}{2} [\theta t_1 + (1-\theta)t_2].$$

Replacing in the left hand side of (11), there exists $c_2 > 0$ such that

$$(b-a)\varphi\left[\frac{\theta t_1 + (1-\theta)t_2}{2}\right] \le c_1 \int_b^c \varphi(c_1h(x)) \, dx = c_1(b-a)[\varphi(c_1t_1)\theta + (1-\theta)\varphi(c_1t_2)].$$

Let $0 < T_1 = \frac{t_1}{2}$, $0 < T_2 = \frac{t_2}{2}$, then there exists $K_2 = 2c_2 > 0$ independent of T_1, T_2 and h such that

$$\varphi[\theta T_1 + (1 - \theta)T_2] \le K_2[\theta \varphi(K_2 T_1) + (1 - \theta)\varphi(K_2 T_2)].$$
(12)

Finally, by Lemma 1.1.1 in [6], (12) is equivalent to the fact that φ is quasiconvex.

2.2. **Sufficient conditions.** Next, we set sufficient conditions for (4) to be verified. The next result is a particular case of Theorem 2.4.2 in [6].

Theorem 3. Let $\varphi \in \mathscr{I}$. If φ is quasiconvex, then there exists $c_2 > 0$ such that

$$|\{x \in \mathbb{R} : M^{\pm}f(x) > \lambda\}| \leq c_2 \int_{\mathbb{R}} \varphi\left(\frac{c_2 f(x)}{\lambda}\right) dx,$$

for all $\lambda > 0$ and for all $f \in L^1_{loc}(\mathbb{R})$.

Proof. It follows straightforwardly taking $\rho = \sigma = g = 1$ in the proof of Theorem 2.4.2 in [6].

However, the quasiconvexity of $\varphi \in \mathscr{I}$ is not a necessary condition for the validity of (4). Let $\varphi(x) = |x|^p$ for $p \ge 1$, then $\varphi \in \mathscr{I}$ and φ is a quasiconvex function on $[0,\infty)$. By Theorem 3 there exists $c_2 > 0$ such that

$$|\{x \in \mathbb{R} : M^{\pm}f(x) > \lambda\}| \leq c_2 \int_{\mathbb{R}} \varphi\left(\frac{c_2 f(x)}{\lambda}\right) dx,$$

for all $\lambda > 0$ and for all $f \in L^1_{loc}(\mathbb{R})$.

Now, let

$$\tilde{\varphi}(x) = \begin{cases} |x|^p & \text{if } |x| \ge 1\\ |x|^{\frac{1}{p}} & \text{if } |x| < 1 \end{cases} \quad \text{for } p > 1;$$

then $\tilde{\varphi} \in \mathscr{I}$ and $\tilde{\varphi}(x) \ge \varphi(x) \ge 0$ for all $x \in \mathbb{R}$. Therefore, there exists $c_2 > 0$ such that

$$|\{x \in \mathbb{R} : M^{\pm}f(x) > \lambda\}| \leq c_2 \int_{\mathbb{R}} \tilde{\varphi}\left(\frac{c_2 f(x)}{\lambda}\right) dx,$$

for all $\lambda > 0$ and for all $f \in L^1_{loc}(\mathbb{R})$, although $\tilde{\varphi}$ is not a quasiconvex function. Hence, the converse of Theorem 3 is not true.

Remark 4. Let $\varphi, \tilde{\varphi} \in \mathscr{I}$ such that $\varphi(x) \leq \tilde{\varphi}(x)$ for all $x \in \mathbb{R}$. If φ is quasiconvex on $[0,\infty)$, then there exists c > 0 such that

$$|\{x \in \mathbb{R} : M^{\pm}(f)(x) > \lambda\}| \le c \int_{\mathbb{R}} \tilde{\varphi}\left(\frac{cf(x)}{\lambda}\right) dx,$$

for all $f \in L^1_{loc}(\mathbb{R})$ and for all $\lambda > 0$.

Moreover, we determine some characteristics of the class of functions that satisfy (4).

Theorem 5. Let $\psi \in \mathscr{I}$. Assume there exist constants $c_1 > 0$ and $x_0 \ge 0$ such that $\psi(x) \ge c_1 x$ for all $x \ge x_0$ and there exists a subinterval $(0, x_v) \subseteq (0, x_0)$ where ψ is either a convex function or a concave one. Then there exists a constant c > 0 such that

$$|\{x \in \mathbb{R} : M^{\pm}(f)(x) > \lambda\}| \le c \int_{\mathbb{R}} \psi\left(\frac{cf(x)}{\lambda}\right) dx,$$

for all $f \in L^1_{loc}(\mathbb{R})$ and for all $\lambda > 0$.

Proof. From (2), the monotonicity of Lebesgue measure and Theorem 5.8 in [1]. \Box

Therefore, (4) is valid for all $f \in L^1_{loc}(\mathbb{R})$ and for all $\lambda > 0$, when $\psi \in \mathscr{I}$ belongs to a bigger subset than that of quasiconvex functions.

2.3. Necessary condition. We also find a necessary condition for (4) to be satisfied.

Theorem 6. Let $\varphi \in \mathscr{I}$. If there exists c > 0 such that

$$|\{x \in \mathbb{R} : M^{\pm}f(x) > \lambda\}| \le c \int_{\mathbb{R}} \varphi\left(\frac{cf(x)}{\lambda}\right) dx, \tag{13}$$

for all $\lambda > 0$ and for all $f \in L^1_{loc}(\mathbb{R})$, then $\frac{y}{c^2} \leq \varphi(y)$ for all y > c.

Proof. First, we consider the case of M^+ .

Let $0 < t_1 < t_2$, $I = (1 - \frac{t_1}{t_2}, 1)$ and $f(x) = t_2 \chi_I(x)$. For any $x \in (0, 1)$ we have $M^+ f(x) > t_1 > 0$ and then

$$|\{x \in \mathbb{R} : M^+ f(x) > t_1\}| \ge 1.$$

Now, with $\lambda = t_1$ and $f(x) = t_2 \chi_I(x)$ in (13), there exists c > 0 such that

$$1 \leq c \int_{\mathbb{R}} \varphi\left(\frac{ct_2 \chi_I(u)}{t_1}\right) du = c \varphi\left(c\frac{t_2}{t_1}\right) \frac{t_1}{t_2}.$$

Finally, we set $y = c_{t_1}^{t_2} > c$, then $y \le c^2 \varphi(y)$ for all y > c.

With the aim of obtaining the result for M^- , we set $I = (0, \frac{t_1}{t_2})$ where $0 < t_1 < t_2$ and we reason as in the case of M^+ .

3. Strong type inequality for M^{\pm}

Theorem 1.2.1 in [6] establishes that the validity of a strong type inequality for M is equivalent to the fact that the function involved satisfies the ∇_2 condition. We obtain an analogous result for M^{\pm} .

Theorem 7. Let $\varphi \in \mathcal{I}$. The next statements are equivalent:

i) there exists $c_1 > 0$ such that

$$\int_{\mathbb{R}} \varphi(M^{\pm}f(x)) \, dx \le c_1 \int_{\mathbb{R}} \varphi(c_1 f(x)) \, dx \quad \text{for all } f \in L^1_{\text{loc}}(\mathbb{R}), \tag{14}$$

ii) the function φ^{α} *is quasiconvex for some* $\alpha \in (0,1)$ *,*

iii) there exists $c_2 > 0$ such that $\int_0^{\sigma} \frac{\varphi(x)}{s^2} ds \leq \frac{c_2 \varphi(c_2 \sigma)}{\sigma}$ for $0 < \sigma < \infty$,

- iv) there exists $c_3 > 0$ such that for t > 0 $\int_0^t \frac{d\varphi(u)}{u} \le \frac{c_3\varphi(c_3t)}{t}$,
- *v*) there exists a > 1 such that

$$\varphi(t) < \frac{1}{2a}\varphi(at), \quad t \ge 0.$$

Proof. The proof of Theorem 1.2.1 in [6] follows this scheme: $i \rightarrow iii \rightarrow v \rightarrow iii \rightarrow i$ and iii) \Leftrightarrow iv). In the case of M^{\pm} it is sufficient to obtain i) \Rightarrow iii) and ii) \Rightarrow i) because the remaining implications are not modified when M is changed by M^{\pm} , as only properties of quasiconvex functions are employed.

i) \Rightarrow iii) Let $f(x) = \chi_{[a,b]}(x)$. After some calculations (see [4, p. 79]), we have

$$Mf(x) = \begin{cases} \frac{b-a}{b-x} & \text{if } x < a\\ 1 & \text{if } a \le x \le b\\ \frac{b-a}{x-a} & \text{if } x > b, \end{cases}$$
$$M^+f(x) = \begin{cases} \frac{b-a}{b-x} & \text{if } x < a\\ 1 & \text{if } a \le x \le b\\ 0 & \text{if } x > b \end{cases} \quad \text{and} \quad M^-f(x) = \begin{cases} 0 & \text{if } x < a\\ 1 & \text{if } a \le x \le b\\ \frac{b-a}{x-a} & \text{if } x > b. \end{cases}$$

Consequently, we can write $M^+f(x) = Mf\chi_{(-\infty,b]}(x)$ and $M^-f(x) = Mf\chi_{[a,\infty)}(x)$. Then, *iii*) follows from *i*) \Rightarrow *iii*) of Theorem 1.2.1 in [6].

 $ii \Rightarrow i$ Due to Theorem 1.2.1 in [6], v) implies that there exists $c_1 > 0$ such that

$$\int_{\mathbb{R}^n} \varphi(Mf(x)) \, dx \le c_1 \int_{\mathbb{R}} \varphi(c_1 f(x)) \, dx, \quad \text{for all } f \in L^1_{\text{loc}}(\mathbb{R}), \tag{15}$$

thus, by (2) and the monotonicity of φ we have

$$\int_{\mathbb{R}} \varphi(M^{\pm}f(x)) dx \le \int_{\mathbb{R}} \varphi(Mf(x)) dx, \quad \text{for all } f \in L^{1}_{\text{loc}}(\mathbb{R}).$$
(16)
(16), we get the desired inequality (14).

From (15) and (16), we get the desired inequality (14).

Remark 8. Item *v*) in Theorem 7 is equivalent to say that $\varphi \in \nabla_2$.

We point out that there exists an alternative way to get the strong type inequality (14) applying interpolation techniques.

Theorems 2, 3 and 5 guarantee the existence of classes of functions $\varphi \in \mathscr{I}$ that satisfy weak type inequalities like (3) and (4); in addition, the operators M^{\pm} are subadditive and strong type (∞, ∞) . Then, by application of Theorem 2.4 in [9] or Theorem 5.2 in [1], we obtain

$$\int_{\mathbb{R}} \Psi(|M^{\pm}(f)|) \, dx \leq K \int_{\mathbb{R}} \Psi(4f) \, dx, \quad \text{for all } f \in L^{1}_{\text{loc}}(\mathbb{R}),$$

and for a family of Young functions Ψ such that $\Psi' = \psi$ is related to $\varphi \in \mathscr{I}$ and provided that the function φ satisfies additional conditions.

4. One-sided maximal operators \mathscr{M}^{\pm}

By $\widehat{\mathscr{I}}$ we denote the class of all nondecreasing functions φ defined for all real number $t \ge 0$ such that $\varphi(t) > 0$ for all t > 0, $\varphi(0+) = 0$ and $\lim_{t \to \infty} \varphi(t) = \infty$.

Let $\Phi \in \widehat{\mathscr{I}} \cap \Delta_2$ be a convex function and let *B* be a bounded measurable set of \mathbb{R}^n . The next definition is introduced in [2].

Definition 9. A real number *c* is a best Φ -approximation of $f \in L^{\Phi}(B)$ if and only if

$$\int_{B} \Phi(|f(x) - c|) dx \le \int_{B} \Phi(|f(x) - c|) dx, \text{ for all } r \in \mathbb{R}.$$

With the symbol $\mu_{\Phi}(f)(B)$ the authors refers to the multivalued operator of all best approximation constants of the function $f \in L^{\Phi}(B)$. It is well known that $\mu_{\Phi}(f)(B)$ is a non empty set; and, if Φ is strictly convex, then $\mu_{\Phi}(f)(B)$ has an only one element.

In [2] the definition of $\mu_{\Phi}(f)(B)$ is extended in a continuous way for functions $f \in L^{\varphi}(B)$ such that $\varphi = \Phi'$ with $\Phi \in C^1$ as follows.

Definition 10. Let $\Phi \in \widehat{\mathscr{I}} \cap \Delta_2$ be a function in C^1 and assume that $\Phi' = \varphi$. If $f \in L^{\varphi}(B)$, then a constant *c* is a extended best approximation of *f* on *B* if *c* is a solution of the next inequalities:

a)
$$\int_{\{f > c\} \cap B} \varphi(|f(y) - c|) dy \le \int_{\{f \le c\} \cap B} \varphi(|f(y) - c|) dy,$$

and

b)
$$\int_{\{f < c\} \cap B} \varphi(|f(y) - c|) dy \le \int_{\{f \ge c\} \cap B} \varphi(|f(y) - c|) dy.$$

Let $\tilde{\mu}_{\Phi}(f)(B)$ be the set of all constants c.

In the particular case of $B = I_{\varepsilon}^{\pm}(x)$ where $I_{\varepsilon}^{\pm}(x)$ is a bounded one-sided interval of $x \in \mathbb{R}$ with positive Lebesgue measure ε , we write $\mu_{\varepsilon}^{\pm}(f)(x)$ for $\mu_{\Phi}(f)(I_{\varepsilon}^{\pm}(x))$ which is the one-sided best approximation by constants and we set $\tilde{\mu}_{\varepsilon}^{\pm}f(x)$ for the set $\tilde{\mu}_{\Phi}(f)(I_{\varepsilon}^{\pm}(x))$ which is the extended one-sided best approximation by constants.

We define the one-sided maximal operators \mathcal{M}^{\pm} , associated to one-sided best approximation by constants, in the following way:

$$\mathscr{M}^{\pm}f(x) = \sup_{\varepsilon > 0} \{ |f_{\varepsilon}^{\pm}(x)| : f_{\varepsilon}^{\pm}(x) \in \tilde{\mu}_{\varepsilon}^{\pm}(f)(x) \}.$$

Remark 11. If $f_{\varepsilon}^{\pm}(x) \in \tilde{\mu}_{\varepsilon}^{\pm}(f)(x)$, there exists $c_{\varepsilon}^{\pm} \in \tilde{\mu}_{\varepsilon}^{\pm}(|f|)(x)$ such that $|f_{\varepsilon}^{\pm}(x)| \leq c_{\varepsilon}^{\pm}$. In fact, since $|f| \geq f \geq -|f|$ and the extended one-sided best approximation operator is

In fact, since $|f| \ge f \ge -|f|$ and the extended one-sided best approximation operator is a monotonous one (Lemma 12 in [3]), there exist $a_{\varepsilon}^{\pm}, b_{\varepsilon}^{\pm} \ge 0$ with $-a_{\varepsilon}^{\pm} \in \tilde{\mu}_{\varepsilon}^{\pm}(-|f|)(x)$ and $b_{\varepsilon}^{\pm} \in \tilde{\mu}_{\varepsilon}^{\pm}(|f|)(x)$ such that $-a_{\varepsilon}^{\pm} \le f_{\varepsilon}^{\pm}(x) \le b_{\varepsilon}^{\pm}$.

 $\begin{aligned} h^{\pm} &\in \tilde{\mu}_{\varepsilon}^{\pm}(|f|)(x) \text{ such that } -a_{\varepsilon}^{\pm} \leq f_{\varepsilon}^{\pm}(x) \leq b_{\varepsilon}^{\pm}. \\ &\text{However, } a_{\varepsilon}^{\pm} \in \tilde{\mu}_{\varepsilon}^{\pm}(|f|)(x) \text{ and } c_{\varepsilon}^{\pm} = \max\{a_{\varepsilon}^{\pm}, b_{\varepsilon}^{\pm}\} \in \tilde{\mu}_{\varepsilon}^{\pm}(|f|)(x) \text{ because } \tilde{\mu}_{\varepsilon}^{\pm}(|f|)(x) \text{ is a closed set (Lemma 11 in [3]). As } c_{\varepsilon}^{\pm} \geq a_{\varepsilon}^{\pm}, b_{\varepsilon}^{\pm}, \text{ we have } \mathcal{M}^{\pm}f(x) \leq \mathcal{M}^{\pm}|f|(x) \text{ and we may assume } f \geq 0. \end{aligned}$

Now, we reason as in [2], working on I_{ε}^{\pm} of \mathbb{R} instead of balls centered at $x \in \mathbb{R}^n$ with radius ε , and we get the following result.

Theorem 12. Let $\Phi \in \widehat{\mathscr{F}} \cap \Delta_2$ be a C^1 convex function and we assume $\Phi' = \varphi$. Let $f \in L^{\varphi}_{loc}(\mathbb{R})$ and we select $f^{\pm}_{\varepsilon}(x) \in \tilde{\mu}^{\pm}_{\varepsilon}(f)(x)$ with $x \in \mathbb{R}$ and $\varepsilon > 0$. Then

$$\frac{1}{C}\varphi(|f_{\varepsilon}^{\pm}(x)|) \leq \frac{1}{\varepsilon} \int_{I_{\varepsilon}^{\pm}} \varphi(|f(y)|) \, dy \leq C\varphi(|f|_{\varepsilon}^{\pm}(x)), \tag{17}$$

and

$$\frac{1}{C}\varphi(|f_{\varepsilon}^{\pm}(x) - f(x)|) \le \frac{1}{\varepsilon} \int_{I_{\varepsilon}^{\pm}} \varphi(|f(y) - f(x)|) dy,$$
(18)

being ε the Lebesgue measure of the intervals I_{ε}^{\pm} and $C = \frac{3\Lambda_{\Phi}^2}{2}$ where Λ_{Φ} is the constant given by the Δ_2 condition on Φ .

Proof. By Remark 11 we can assume $f \ge 0$ and then $f_{\varepsilon}^{\pm}(x) \ge 0$. In effect, by a) in Definition 10, if c < 0

$$\int_{I_{\varepsilon}^{\pm}} \varphi(|f(y) - c|) dy = \int_{\{f > c\} \cap I_{\varepsilon}^{\pm}} \varphi(|f(y) - x|) dy$$

$$\leq \int_{\{f \le c < 0\} \cap I_{\varepsilon}^{\pm}} \varphi(|f(y) - x|) dy = 0.$$
(19)

As Φ is a C^1 convex function, then $\varphi(x) > 0$ for x > 0; if c < 0 then f(y) - c > -c > 0, consequently $\varphi(|f(y) - c|) > \varphi(-c) > 0$ and

$$\int_{I_{\varepsilon}^{\pm}} \varphi(|f(y) - c|) \, dy > |\varphi(-c)|\varepsilon > 0.$$
⁽²⁰⁾

From (19) and (20) we obtain a contradiction.

Now, applying (1) and $|I_{\varepsilon}^{\pm} \cap \{f_{\varepsilon}^{\pm} < f\}| \leq \varepsilon$, we have

$$\frac{1}{\varepsilon} \int_{I_{\varepsilon}^{\pm}} \varphi(f(y)) \, dy \leq \frac{\Lambda_{\Phi}^2}{2\varepsilon} \int_{I_{\varepsilon}^{\pm} \cap \{f_{\varepsilon}^{\pm} < f\}} \varphi(f(y) - f_{\varepsilon}^{\pm}(x)) \, dy + \frac{\Lambda_{\Phi}^2}{2} \varphi(f_{\varepsilon}^{\pm}(x)) \\
+ \frac{1}{\varepsilon} \int_{I_{\varepsilon}^{\pm} \cap \{f_{\varepsilon}^{\pm} \ge f\}} \varphi(f(y)) \, dy.$$
(21)

Next, by b) of Definition 10 and if we suppose, without loss of generality, that $\Lambda_{\Phi} \ge \sqrt{2}$, we get

$$(21) \leq \frac{\Lambda_{\Phi}^2}{2\varepsilon} \int_{I_{\varepsilon}^{\pm} \cap \{f_{\varepsilon}^{\pm} \geq f\}} [\varphi(-f(y) + f_{\varepsilon}^{\pm}(x)) + \varphi(f(y))] \, dy + \frac{\Lambda_{\Phi}^2}{2} \varphi(f_{\varepsilon}^{\pm}(x)). \tag{22}$$

From (1) and as $f_{\varepsilon}^{\pm}(x) - f(y) \ge 0$ and $f(y) \ge 0$, then

$$\varphi(f_{\varepsilon}^{\pm}(x) - f(y)) + \varphi(f(y)) \le 2\varphi(f_{\varepsilon}^{\pm}(x) - f(y) + f(y)) = 2\varphi(f_{\varepsilon}^{\pm}(x)),$$

and since $|I_{\varepsilon}^{\pm} \cap \{f_{\varepsilon}^{\pm} \ge f\}| \le \varepsilon$, we obtain

$$(22) \leq \frac{\Lambda_{\Phi}^2}{2\varepsilon} \int_{I_{\varepsilon}^{\pm} \cap \{f_{\varepsilon}^{\pm} \geq f\}} 2\varphi(f_{\varepsilon}^{\pm}(x)) \, dy + \frac{\Lambda_{\Phi}^2}{2}\varphi(f_{\varepsilon}^{\pm}(x)) \leq \frac{3\Lambda_{\Phi}^2}{2}\varphi(f_{\varepsilon}^{\pm}(x)) + \frac{3}{2}\varphi(f_{\varepsilon}^{\pm}(x)) + \frac{3$$

Therefore, there exists $C = \frac{3\Lambda_{\Phi}^2}{2}$ such that

$$\frac{1}{\varepsilon} \int_{I_{\varepsilon}^{\pm}} \varphi(f(y)) \, dy \le C \varphi(f_{\varepsilon}^{\pm}(x)).$$
(23)

On the other hand, applying (1),

$$\varphi(f_{\varepsilon}^{\pm}(x)) = \frac{1}{\varepsilon} \int_{I_{\varepsilon}^{\pm}} \varphi(f_{\varepsilon}^{\pm}(x)) \, dy$$

$$\leq \frac{\Lambda_{\Phi}^{2}}{2\varepsilon} \int_{I_{\varepsilon}^{\pm} \cap \{f_{\varepsilon}^{\pm} > f\}} [\varphi(f_{\varepsilon}^{\pm}(x) - f(y)) + \varphi(f(y))] \, dy + \frac{1}{\varepsilon} \int_{I_{\varepsilon}^{\pm} \cap \{f_{\varepsilon}^{\pm} \le f\}} \varphi(f_{\varepsilon}^{\pm}(x)) \, dy. \quad (24)$$

Now, we apply a) of Definition 10 and we have

$$(24) \leq \frac{\Lambda_{\Phi}^{2}}{2\varepsilon} \int_{I_{\varepsilon}^{\pm} \cap \{f_{\varepsilon}^{\pm} \leq f\}} \varphi(f(y) - f_{\varepsilon}^{\pm}(x)) \, dy + \frac{\Lambda_{\Phi}^{2}}{2\varepsilon} \int_{I_{\varepsilon}^{\pm} \cap \{f_{\varepsilon}^{\pm} > f\}} \varphi(f(y)) \, dy \\ + \frac{1}{\varepsilon} \int_{I_{\varepsilon}^{\pm} \cap \{f_{\varepsilon}^{\pm} \leq f\}} \varphi(f_{\varepsilon}^{\pm}(x)) \, dy \\ \leq \frac{\Lambda_{\Phi}^{2}}{2\varepsilon} \int_{I_{\varepsilon}^{\pm} \cap \{f_{\varepsilon}^{\pm} \leq f\}} \left[\varphi(f(y) - f_{\varepsilon}^{\pm}(x)) + \varphi(f_{\varepsilon}^{\pm}(x)) \right] \, dy + \frac{\Lambda_{\Phi}^{2}}{2\varepsilon} \int_{I_{\varepsilon}^{\pm} \cap \{f_{\varepsilon}^{\pm} > f\}} \varphi(f(y)) \, dy,$$

$$(25)$$

provided that $1 \leq \frac{\Lambda_{\Phi}^2}{2}$. Now, by (1) we get

$$(25) \leq \frac{\Lambda_{\Phi}^2}{2\varepsilon} \int_{I_{\varepsilon}^{\pm} \cap \{f_{\varepsilon}^{\pm} \leq f\}} 2\varphi(f(y)) \, dy + \frac{\Lambda_{\Phi}^2}{2\varepsilon} \int_{I_{\varepsilon}^{\pm} \cap \{f_{\varepsilon}^{\pm} > f\}} \varphi(f(y)) \, dy \leq \frac{\Lambda_{\Phi}^2}{\varepsilon} \int_{I_{\varepsilon}^{\pm}} \varphi(f(y)) \, dy,$$

because $\frac{\Lambda_{\Phi}^2}{2} \leq \Lambda_{\Phi}^2$ and $I_{\varepsilon}^{\pm} = I_{\varepsilon}^{\pm} \cap \{f_{\varepsilon}^{\pm} \leq f\} \cup I_{\varepsilon}^{\pm} \cap \{f_{\varepsilon}^{\pm} > f\}.$ Then

$$\frac{1}{C}\varphi(f_{\varepsilon}^{\pm}(x)) \le \frac{1}{\varepsilon} \int_{I_{\varepsilon}^{\pm}} \varphi(f(y)) \, dy, \tag{26}$$

where $C = \frac{3\Lambda_{\Phi}^2}{2}$ and (17) follows from (23) and (26). It remains to prove (18). Note that if $f_{\varepsilon}^{\pm}(x) \in \tilde{\mu}_{\varepsilon}^{\pm}(f)(x)$, then $f_{\varepsilon}^{\pm}(x) - f(x) \in \tilde{\mu}_{\varepsilon}^{\pm}(f - I_{\varepsilon})$ f(x))(x). We apply (17) to the function f - f(x) and we obtain

$$\frac{1}{C}\varphi(|f_{\varepsilon}^{\pm}(x) - f(x)|) \leq \frac{1}{\varepsilon} \int_{I_{\varepsilon}^{\pm}} \varphi(|f(y) - f(x)|) dy,$$

which is the inequality that we wished to obtain.

Next, we get an inequality that allows us to compare M^{\pm} with \mathcal{M}^{\pm} .

Lemma 1. Let $\Phi \in \widehat{\mathscr{I}} \cap \Delta_2$ be a C^1 convex function and let $\Phi' = \varphi$ be such that $A\varphi(t) \leq \varphi(Kt)$ for all $t \geq 0$ and some constants K, A > 1. Then there exists C > 0 such that

$$\frac{1}{K}\varphi^{-1}\left(\frac{1}{C}M^{\pm}(\varphi(|f|))(x)\right) \le \mathscr{M}^{\pm}(|f|)(x) \le \varphi^{-1}(CM^{\pm}(\varphi(|f|))(x)),$$
(27)

where $M^{\pm}(f) = \sup_{\varepsilon > 0} \frac{1}{\varepsilon} \int_{I_{\varepsilon}^{\pm}} |f(y)| dy.$

Proof. Let φ^{-1} be the generalized inverse of the monotonous function φ which is defined by $\varphi^{-1}(s) = \sup\{t : \varphi(t) \le s\}$, then

$$t \le \varphi^{-1}(\varphi(t))$$
 for all $t \ge 0$, (28)

and for every $\tilde{\varepsilon} > 0$

$$\varphi^{-1}(\varphi(t) - \tilde{\varepsilon}) \le t \quad \text{for all } t \ge 0.$$
 (29)

Actas del XII Congreso Dr. Antonio A. R. Monteiro (2013), 2014

The condition $A\varphi(t) \leq \varphi(Kt)$ for all $t \geq 0$ and some constants A, K > 1, implies that $\varphi(0+) = 0$ and $\varphi(t) \to \infty$ as $t \to \infty$; therefore, φ^{-1} is a real valued function and $\varphi^{-1} \in \widehat{\mathscr{I}}$. From (17) in Theorem 12 we have

$$|f|_{\varepsilon}^{\pm}(x) \leq \varphi^{-1}\left(\frac{C}{\varepsilon}\int_{I_{\varepsilon}^{\pm}}\varphi(|f(y)|)\,dy\right),$$

and since

$$\frac{C}{\varepsilon}\int_{I_{\varepsilon}^{\pm}}\varphi(|f(y)|)\,dy\leq CM^{\pm}(\varphi(|f|))(x),$$

then

$$\mathscr{M}^{\pm}(|f|) = \sup_{\varepsilon > 0} |f|_{\varepsilon}^{\pm}(x) \le \varphi^{-1}(CM^{\pm}(\varphi(|f|))(x).$$
(30)

Now, by (17) in Theorem 12 and the monotonicity of φ we have

$$\frac{1}{\varepsilon} \int_{I_{\varepsilon}^{\pm}} \varphi(|f(y)|) \, dy \leq C \varphi(|f|_{\varepsilon}^{\pm}(x)) \leq \varphi(\mathscr{M}^{\pm}(|f|)(x), \quad \text{for all } \varepsilon > 0,$$

and therefore

$$M^{\pm}(\varphi(|f|))(x) \le C\varphi(\mathscr{M}^{\pm}(|f|)(x)).$$
(31)

As there exist K, A > 1 such that $A\varphi(t) \le \varphi(Kt)$ for all $t \ge 0$, then $0 \le \varphi(t) < A\varphi(t) \le \varphi(Kt)$ for all $t \ge 0$ and consequently $0 < \varphi(Kt) - \varphi(t)$ for all t > 0. Now, from (29) and taking $0 < \tilde{\varepsilon} = \varphi(Kt) - \varphi(t)$ for all t > 0, we get

$$\varphi^{-1}(\varphi(t)) = \varphi^{-1}(\varphi(Kt) - \tilde{\varepsilon}) \le Kt \quad \text{for all } t > 0.$$
(32)

From (31), the fact that φ^{-1} is a nondecreasing function and (32), we get

$$\varphi^{-1}\left(\frac{1}{C}M^{\pm}(\varphi(|f|))(x)\right) \le \varphi^{-1}(\varphi(\mathscr{M}^{\pm}(|f|)(x))) \le K\mathscr{M}^{\pm}(|f|)(x).$$
(33)

Therefore, from (30) and (33),

$$\frac{1}{K}\varphi^{-1}\left(\frac{1}{C}M^{\pm}(\varphi(|f|))(x)\right) \leq \mathscr{M}^{\pm}(|f|)(x) \leq \varphi^{-1}(CM^{\pm}(\varphi(|f|))(x)).$$

4.1. Strong type inequalities for \mathcal{M}^{\pm} .

Theorem 13. Let $\Phi \in \widehat{\mathscr{I}} \cap \Delta_2$ be a C^1 convex function and let $\Phi' = \varphi$ be such that $A\varphi(t) \leq \varphi(Kt)$ for all $t \geq 0$ and for some constants K, A > 1. For a function $\theta \in \widehat{\mathscr{I}} \cap \Delta_2$, we have that the function $\theta \circ \varphi^{-1}$ satisfies the ∇_2 condition if and only if there exists a constant \tilde{C} independent of f such that

$$\int_{\mathbb{R}} \theta(\mathscr{M}^{\pm}(|f|)(x)) \, dx \leq \tilde{C} \int_{\mathbb{R}} \theta(\tilde{C}|f(x)|) \, dx,$$

for all $f \in L^{\varphi}_{loc}(\mathbb{R})$.

Proof. \Leftarrow) Suppose that $\mathscr{M}^{\pm}(|f|)$ verifies

$$\int_{\mathbb{R}} \boldsymbol{\theta}(\mathscr{M}^{\pm}(|f|)(x)) \, dx \leq \tilde{C} \int_{\mathbb{R}} \boldsymbol{\theta}(\tilde{C}|f(x)|) \, dx$$

for all $f \in L^{\varphi}_{\text{loc}}(\mathbb{R})$. As $\theta \in \widehat{\mathscr{I}} \cap \Delta_2$, there exists $K_1 > 0$ such that

$$\int_{\mathbb{R}} \theta(K\mathscr{M}^{\pm}(|f|)(x)) \, dx \le K_1 \int_{\mathbb{R}} \theta(K_1|f(x)|) \, dx, \tag{34}$$

for all $f \in L^{\varphi}_{\text{loc}}(\mathbb{R})$.

From (27), (34) and the fact that M^{\pm} is homogeneous, we have

$$\int_{\mathbb{R}} \theta\left(\varphi^{-1}\left(\frac{1}{C}M^{\pm}(\varphi(|f|))(x)\right)\right) dx = \int_{\mathbb{R}} \theta\left(\varphi^{-1}\left(M^{\pm}\left(\frac{1}{C}\varphi(|f|)\right)(x)\right)\right) dx$$
$$\leq \int_{\mathbb{R}} \theta(K\mathcal{M}^{\pm}(|f|)(x)) dx$$
$$\leq K_{1} \int_{\mathbb{R}} \theta(K_{1}|f(x)|) dx.$$
(35)

Since $t \leq \varphi^{-1}(\varphi(t))$ for all $t \geq 0$, then $K_1|f(x)| \leq \varphi^{-1}(\varphi(K_1|f(x)|))$; now, by the monotonicity of θ and the fact that $\varphi \in \widehat{\mathscr{I}} \cap \Delta_2$, there exists $K_2 > 0$ such that

$$\int_{\mathbb{R}} \theta(K_1|f(x)|) dx \le \int_{\mathbb{R}} \theta(\varphi^{-1}(\varphi(K_1|f(x)|))) dx \le \int_{\mathbb{R}} \theta(\varphi^{-1}K_2(\varphi(|f(x)|))) dx, \quad (36)$$

for all $f \in L^{\varphi}_{loc}(\mathbb{R})$. Therefore, from (35) and (36), we have

$$\int_{\mathbb{R}} \Psi(M^{\pm}(g)(x)) \, dx \le \tilde{C} \int_{\mathbb{R}} \Psi(\tilde{C}g(x)) \, dx, \tag{37}$$

where $\psi = \theta \circ \varphi^{-1}$, $g = \frac{1}{C}\varphi(|f|)$ for any $f \in L^{\varphi}_{loc}(\mathbb{R})$ and $\tilde{C} = \max\{K_1, K_2C\}$. As the inequality (37) holds for any $f \in L^{\varphi}_{loc}(\mathbb{R})$ being $g = \frac{1}{C}\varphi(|f|)$, we choose $f = \varphi^{-1}(Cg)$ for any nonnegative function $g \in L^{1}_{loc}(\mathbb{R})$ and, using the fact that $\varphi(\varphi^{-1}(t)) = t$ provided that $t \in \operatorname{Im} \varphi \cup \{\inf \operatorname{Im} \varphi, \sup \operatorname{Im} \varphi\}$, we obtain

$$\int_{\mathbb{R}} \Psi(M^{\pm}(g)(x)) \, dx \leq \tilde{C} \int_{\mathbb{R}} \Psi(\tilde{C}g(x)),$$

for all nonnegative functions $g \in L^1_{loc}(\mathbb{R})$ and where \tilde{C} is independent of g. Now, by Theorem 7, we get $\psi = \theta \circ \varphi^{-1} \in \nabla_2$.

 \Rightarrow) As $\psi = \theta \circ \varphi^{-1} \in \nabla_2$, by Theorem 7, there exists $K_1 > 0$ such that

$$\int_{\mathbb{R}} \Psi(M^{\pm}(g)(x)) \, dx \le K_1 \int_{\mathbb{R}} \Psi(K_1g(x)) \, dx, \tag{38}$$

for all nonnegative functions $g \in L^1_{loc}(\mathbb{R})$. By (27) we have

$$\mathscr{M}^{\pm}(|f|)(x) \le \varphi^{-1}(CM^{\pm}(\varphi(|f|))(x)), \tag{39}$$

and if $K_2 = \max\{C, K_1\}$, both inequalities hold with K_2 .

Therefore, from (38), the monotonicity of θ , the homogeneity of M^{\pm} and (39), we have

$$\begin{split} \int_{\mathbb{R}} \theta(\mathscr{M}^{\pm}(|f|(x))) \, dx &\leq \int_{\mathbb{R}} \psi(K_2 M^{\pm}(\varphi(|f|))(x)) \, dx \\ &= \int_{\mathbb{R}} \psi(M^{\pm}(K_2 \varphi(|f|))(x)) \, dx \\ &\leq K_2 \int_{\mathbb{R}} \psi(K_2^2 \varphi(|f(x)|)) \, dx \\ &\leq K_3 \int_{\mathbb{R}} \psi(K_3 \varphi(|f(x)|)) \, dx, \end{split}$$
(40)

with $K_3 = \max\{K_2, K_2^2\}$.

Since $A\varphi(t) \le \varphi(Kt)$ for all $t \ge 0$ and for some A, K > 1, there exists *l* such that $K_3 \le A^l$ and, applying the inequality *l* times, then

$$K_3\varphi(x) \leq A^l\varphi(x) \leq A^{l-1}\varphi(Kt) \leq \varphi(K^lt).$$

Now

$$K_3 \int_{\mathbb{R}} \psi(K_3 \varphi(|f(x)|)) dx \leq K_4 \int_{\mathbb{R}} \psi(\varphi(K_4|f(x)|)) dx,$$

where $K_4 = \max\{K_3, K^l\}$. By (32) we have $\varphi^{-1}(\varphi(t)) \leq Kt$ and since $\theta \circ \varphi^{-1} = \psi$, then $(\psi \circ \varphi)(t) = (\theta \circ \varphi^{-1} \circ \varphi)(t) \leq \theta(Kt)$; now

$$K_4 \int_{\mathbb{R}} \psi(\varphi(K_4|f(x)|)) \, dx \le K_4 \int_{\mathbb{R}} \theta(KK_4|f(x)|) \, dx \le \tilde{C} \int_{\mathbb{R}} \theta(\tilde{C}|f(x)|) \, dx, \tag{41}$$

being $\tilde{C} = \max\{K_4, KK_4\}$.

Consequently, from (40) and (41), we get

$$\int_{\mathbb{R}} \theta(\mathscr{M}^{\pm}(|f|(x))) \, dx \leq \tilde{C} \int_{\mathbb{R}} \theta(\tilde{C}|f(x)|) \, dx.$$

Remark 14. If $\varphi \in \widehat{\mathscr{I}}$ such that $t^p \leq \varphi \leq Ct^p$ then $\varphi(Kt) \geq A\varphi(t)$ for all $t \geq 0$ and for any K > 1 such that $A = \frac{K^p}{C} > 1$. In consequence, Theorem 13 allows us to consider $\varphi \in \widehat{\mathscr{I}}$ which is not a strictly increasing function and in this case $\tilde{\mu}_{\varepsilon}^{\pm}(f)(x)$ may have more than one element.

We also get sufficient conditions to have a strong type inequality for \mathscr{M}^{\pm} softening the hypothesis of Theorem 13.

Theorem 15. Let $\Phi \in \widehat{\mathscr{I}} \cap \Delta_2$ be a convex function in C^1 and let $\Phi' = \varphi$ such that $A\varphi(t) \leq \varphi(Kt)$ for all $t \geq 0$ and for some constants K, A > 1. Then

$$\int_{\mathbb{R}} \Phi(\mathscr{M}^{\pm}(|f|)(x)) \, dx \le C \int_{\mathbb{R}} \Phi(C|f(x)|) \, dx$$

for all $f \in L^{\varphi}_{loc}(\mathbb{R})$ and where the constant *C* is independent of *f*.

Proof. With the aim of applying Theorem 13, we need to show $\Phi \circ \varphi^{-1} \in \nabla_2$ where $\Phi \in \widehat{\mathscr{I}} \cap \Delta_2$ and a proof of this fact is done in [2].

4.2. **Operators** M_p^{\pm} . If $\Phi(t) = t^{p+1}$ with p > 0 in (27), there exists a positive constant \tilde{K} independent of f such that

$$\frac{1}{\tilde{K}} \left(M^{\pm}(|f|^{p})(x) \right)^{\frac{1}{p}} \le \mathscr{M}_{t^{p+1}}^{\pm}(|f|)(x) \le \tilde{K}(M^{\pm}(|f|^{p})(x))^{\frac{1}{p}}.$$
(42)

Let $M_p^{\pm}(f)(x) = \left(\sup_{\varepsilon>0} \frac{1}{\varepsilon} \int_{I_{\varepsilon}^{\pm}(x)} |f(t)|^p dt\right)^{\frac{1}{p}} = (M^{\pm}(|f|^p)(x))^{\frac{1}{p}}$. The operators M_p^{\pm} are related

to one-sided *p*-averages of a function and they are homogeneous like M^{\pm} .

A useful and particularly simple characterization of strong type inequalities involving M_p^{\pm} may be established for this special case employing Theorem 13.

Corollary 16. Let $\theta \in \widehat{\mathscr{I}}$ and p > 0, then there exists $\overline{K} > 0$ such that

$$\int \theta(M_p^{\pm}(f)(x)) \, dx \le \bar{K} \int \theta(\bar{K}|f(x)|) \, dx, \tag{43}$$

for all $f \in L^p_{loc}(\mathbb{R})$ if and only if $\theta(t^{1/p}) \in \nabla_2$.

Proof. It follows from Theorem 13 with $\Phi(x) = \frac{x^{p+1}}{p+1}$ because $\Phi \in \widehat{\mathscr{I}} \cap \Delta_2$ is a C^1 convex function such that $A\varphi(t) < \varphi(Kt)$ for all $t \ge 0$ with A > 1, $K > A^{\frac{1}{p}}$ and where $\varphi = \Phi'$. \Box

Remark 17. If (43) holds, then $||M_p^{\pm}(f)||_{\theta} \leq C||f||_{\theta}$, where $||f||_{\theta}$ denotes the Luxemburg norm of f defined by

$$||f||_{\theta} = \inf \left\{ \lambda > 0 : \int_{\mathbb{R}} \theta \left(\frac{|f(x)|}{\lambda} \right) dx \le 1 \right\},$$

being θ a Young function and $f \in L^{\theta}(\mathbb{R})$.

Proof. The statement follows straightforwardly from Remark 2 in [2].

ACKNOWLEDGMENT

The authors would like to thank the referees for their valuable comments and suggestions.

REFERENCES

- [1] S. Favier, S. Acinas, *Maximal inequalities in Orlicz spaces*. Int. J. Math. Anal. (Ruse) 6 (2012), no. 41–44, 2179–2198. MR 2946265.
- [2] S. Favier, F. Zó, Maximal inequalities for a best approximation operator in Orlicz spaces. Comment. Math. 51 (2011), no. 1, 3–21. MR 2768735.
- [3] S. Favier, F. Zó, A Lebesgue type differentiation theorem for best approximations by constants in Orlicz spaces. Real Analysis Exchange, **30** (2005), no. 1, 29–42. MR 2126792.
- [4] L. Grafakos, *Classical Fourier Analysis*. Second edition. Graduate Texts in Mathematics, 249. Springer, New York, 2008. MR 2445437.
- [5] E. Hewitt, K. Stromberg, *Real and Abstract Analysis*. Springer-Verlag, Berlin-Heidelberg-New York, 1975. MR 0367121.
- [6] V. Kokilashvili, M. Krbec, Weighted Inequalities in Lorentz and Orlicz Spaces. World Scientific Publishing Co., Inc., River Edge, NJ, 1991. MR 1156767.
- [7] F. J. Martín-Reyes, New proofs of weighted inequalities for one-sided Hardy-Littlewood maximal functions. Proc. Amer. Math. Soc. 117 (1993), no. 3, 691–698. MR 1111435.
- [8] F. J. Martín-Reyes, P. Ortega Salvador, A. de la Torre, Weighted inequalities for one-sided maximal functions. Trans. Amer. Math. Soc. 319 (1990), no. 2, 517–534. MR 0986694.
- [9] F. D. Mazzone, F. Zó, On maximal inequalities arising in best approximation. JIPAM. J. Inequal. Pure Appl. Math. 10 (2009), no. 2, Article 58, 10 pp. MR 2511951.
- [10] P. Ortega Salvador, Weighted inequalities for one-sided maximal functions in Orlicz spaces. Studia Math. 131 (1998), no. 2, 101–114. MR 1636403.
- [11] P. Ortega Salvador, L. Pick, Two-weight weak and extra-weak type inequalities for the one-sided maximal operator. Proc. Royal Soc. Edinburgh. 123 (1993), section A, 1109–1118. MR 1263909.
- [12] M. M. Rao, Z. D. Ren, Theory of Orlicz Spaces. Marcel Dekker, Inc., New York, 1991. MR 1113700.
- [13] E. Sawyer, Weighted inequalities for one-sided Hardy-Littlewood maximal function. Trans. Amer. Math. Soc. 297 (1986), no. 1, 53–61. MR 0849466.

UNIVERSIDAD NACIONAL DE SAN LUIS, INSTITUTO DE MATEMÁTICA APLICADA SAN LUIS, CO-NICET AND DEPARTAMENTO DE MATEMÁTICA, (5700) SAN LUIS, ARGENTINA *E-mail*: sfavier@unsl.edu.ar

UNIVERSIDAD NACIONAL DE LA PAMPA, DEPARTAMENTO DE MATEMÁTICA DE LA FACULTAD DE CIENCIAS EXACTAS Y NATURALES, (6300) SANTA ROSA, LA PAMPA, ARGENTINA

E-mail: sonia.acinas@gmail.com