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A TOPOLOGICAL CHARACTERIZATION OF THE DEDEKIND–MACNEILLE
COMPLETION FOR HEYTING ALGEBRAS

CARLOS ERNESTO SCIRICA AND ALEJANDRO GUSTAVO PETROVICH

ABSTRACT. An important problem in the theory of Heyting algebras is to find completions
with different properties. In this paper we introduce the notion of a pseudoregular open
set in topological spaces. By means of this notion and based on Stone’s and Priestley’s
topologies we construct a topological completion of Heyting algebras and we prove that this
completion coincides, up to isomorphism, with the well-known completion of Dedekind–
MacNeille. Finally we prove an interesting minimality condition.

1. INTRODUCTION

Heyting algebras are the algebraic counterpart of the intuitionistic propositional calculus.
An important problem in algebraic logic is to find completions of different ordered algebraic
structures. In the case of Heyting algebras there are several known completions. Among
them, we can mention the completion of Dedekind–MacNeille [6, pp. 187–188], the cones
completion of Maksimova [7] and the profinite completion [2]. Of all the previous comple-
tions, the Dedekind–MacNeille completion is the only one which is regular. The regularity
condition in a completion is used by Bezhanishvili and Harding in [4] to prove the func-
tional representation of Heyting monadic algebras, which were introduced by Monteiro and
Varsavsky in [8].

In the first part of this paper we construct a complete Heyting algebra by means of a set
endowed with two topologies. We use this tool to give a topological characterization of the
Dedekind–MacNeille completion by means of Stone’s and Priestley’s topologies. Finally
we prove an interesting minimality condition related to this completion.

2. COMPLETE HEYTING ALGEBRAS

Definition 1. Let T1 and T2 be two topologies on a set X such that T1 ⊆ T2. We say that

A is a pseudoregular open set if A =
(

A2
)01

, where A2 denotes the closure of A under the

topology T2, and
(

A2
)01

is the interior of A2 under the topology T1.

Note that if T1 = T2 then the notion of pseudoregular open set coincides with the usual
notion of regular open set.

Lemma 1. Let T1 and T2 be two topologies on a set X such that T1 ⊆ T2. Then
(

A2
)01

is a
pseudoregular open set for every A⊆ X.
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Proof. Let B =
(

A2
)01

. We must prove that
(

B2
)01

= B. Since B ∈ T1 and B ⊆ B2, then

B ⊆
(

B2
)01

. On the other hand we have that
(

B2
)01
⊆
(

A22)01

⊆
(

A2
)01

, which proves

the reverse inclusion
(

B2
)01
⊆ B. �

In the literature a set X endowed with two topologies is called a bitopological space
([5]). In this paper we shall only consider bitopological spaces where one of the topologies
is finer than the other one. In this case we shall denote by PReg(X) the set determined by
the pseudoregular open subsets of X .

Theorem 2. If X is a bitopological space then PReg(X) is a complete Heyting algebra
where the order is given by inclusion, the lattice operations are given by A1∧A2 = A1∩A2;

A1∨A2 =
(

A1∪A2
2
)01

, and implication is given by the formula A1→ A2 =
(

Ac
1∪A2

2
)01

.

Moreover, if (Ai)i∈I is a family of pseudoregular open subsets of X, then
∨

i∈I Ai =
(⋃

i∈I Ai
2
)01

and
∧

i∈I Ai =
(⋂

i∈I Ai
2
)01

.

Proof. Let A1,A2 be in PReg(X). In order to verify that A1 ∧A2 = A1 ∩A2 it is enough
to prove that A1 ∩A2 is also a pseudoregular open set. Since A1 ∩A2 is an open set in the

topology T1 it follows that A1 ∩ A2 ⊆
(

A1∩A2
2
)01

. On the other hand
(

A1∩A2
2
)01
⊆(

A1
2∩A2

2
)01

=
(

A1
2
)01
∩
(

A2
2
)01

= A1∩A2, proving that A1∩A2 =
(

A1∩A2
2
)01

.

It follows from Lemma 1 that
(

A1∪A2
2
)01

is a pseudoregular open set and it is clear
that it contains both A1 and A2. Let B ∈ PReg(X) such that A1 ⊆ B and A2 ⊆ B. Then

A1 ∪A2 ⊆ B, so
(

A1∪A2
2
)01
⊆
(

B2
)01

= B, thus A1 ∨A2 =
(

A1∪A2
2
)01

. Since /0 and
X are pseudoregular open sets, then PReg(X) is a bounded lattice. Our next task will be
to prove that it is distributive. To this end we shall use the following well known fact:
a lattice L is distributive if and only if given elements a,b,c ∈ L such that a∧ b = a∧ c
and a∨ b = a∨ c then b = c. Let A, B and C be pseudoregular open subsets of X such

that A∩ B = A∩C and
(

A∪B2
)01

=
(

A∪C2
)01

. We claim that B2
= C2. Let x ∈ B2

and assume that x 6∈ C2. Then there exists an open set U in the topology T2 such that
x ∈ U and U ∩C = /0. Since x ∈ B2 it follows that U ∩B 6= /0. Take y ∈ U ∩B. Since

U ∩B ⊆ B ⊆
(

A∪B2
)01

and
(

A∪B2
)01

=
(

A∪C2
)01

it follows that y ∈
(

A∪C2
)01

. In

particular we have that y ∈ A∪C2. Since U ∩B is an open set in the topology T2 we would
have that U ∩B∩ (A∪C) 6= /0 and since U ∩B∩C = /0 we obtain that U ∩B∩A 6= /0. But
since A∩B = A∩C we would arrive to U ∩C∩A 6= /0, which is in contradiction with the
fact that U ∩C = /0. Hence B2 ⊆ C2 and in a similar way the other inclusion is proved.

Therefore B2
= C2. It follows that B =

(
B2
)01

=
(

C2
)01

= C and hence PReg(X) is a
bounded distributive lattice.

We know from Lemma 1 that
(

Ac
1∪A2

2
)01

is in PReg(X). On the other hand, since Ac
1

is a closed set under the topology T2 we have that A1∩
(

Ac
1∪A2

2
)01

= A1∩
(

Ac
1∪A2

2
)01
⊆
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A2
2 and then A1∩

(
Ac

1∪A2
2
)01
⊆
(

A2
2
)01

= A2, because A1∩
(

Ac
1∪A2

2
)01

is an open set
under the topology T1.

Let W be a pseudoregular open set such that A1∩W ⊆ A2. Hence W ⊆ Ac
1∪A2 and then

W =
(

W 2
)01
⊆
(

Ac
1∪A2

2
)01

.

Therefore A1→ A2 =
(

Ac
1∪A2

2
)01

, which proves that PReg(X) is a Heyting algebra.
Let (Ai)i∈I be a family of pseudoregular open sets. It follows from Lemma 1 that(⋃
i∈I Ai

2
)01

is a pseudoregular open set and it is clear that it is an upper bound of the
family (Ai)i∈I . Let B be another pseudoregular open set which is also an upper bound of

the given family. Since
⋃

i∈I Ai ⊆ B then
(⋃

i∈I Ai
2
)01
⊆
(

B2
)01

= B. Therefore
∨

i∈I Ai =(⋃
i∈I Ai

2
)01

. In a similar way it is proved that
∧

i∈I Ai =
(⋂

i∈I Ai
2
)01

. �

Let H be a Heyting algebra and let a ∈ H. Let χ (H) be the set of lattice prime filters
of H and let σ (a) = {F ∈ χ (H) | a ∈ F}. We shall consider the following topologies
defined on χ (H): the Stone topology, denoted by TS, having as a basis the sets of the form
{σ (a)}a∈H , and the Priestley topology, denoted by TP, having as a basis the sets of the form
{σ (a)∩σ c (b)}a,b∈H . We shall denote by PRegSP (χ (H)) the Heyting algebra determined
by the pseudoregular open sets according to these topologies.

Theorem 3. Let H be a Heyting algebra. The following conditions are equivalent:

(1) H is a complete Heyting algebra.
(2) If A ∈ TS, then AP ∈ TS.

Proof. (1)⇒ (2). Let A ∈ TS. Then there exists a family {ai}i∈I of elements in H such that
A =

⋃
i∈I σ

(
ai). Since H is complete, there exists (

∨
i∈I ai) ∈H. In order to prove that AP ∈

TS it is enough to see that AP
= σ (

∨
i∈I ai). Since σ is an order preserving map it follows

that σ (
∨

i∈I ai) ⊇ σ(ai) (∀i ∈ I). Thus σ (
∨

i∈I ai) ⊇
⋃

i∈I σ(ai) and then σ (
∨

i∈I ai)
P ⊇⋃

i∈I σ(ai)
P
= AP. Since σ (

∨
i∈I ai) is closed in TP we infer that σ (

∨
i∈I ai)

P
= σ (

∨
i∈I ai).

Therefore AP ⊆ σ (
∨

i∈I ai). To prove the reverse inclusion take Q ∈ σ (
∨

i∈I ai). Suppose
that Q /∈ AP. Hence there are elements b,c ∈ H such that Q ∈ σ(b)∩σ c(c) and σ(b)∩
σ c(c)∩ A = /0. It follows that σ(b)∩ σ c(c)∩ σ(ai) = /0 ∀i ∈ I or, equivalently, σ(b)∩
σ(ai) ⊆ σ(c) for every index i ∈ I. Thus b∧ ai ≤ c (∀i ∈ I), which implies ai ≤ b→ c
(∀i ∈ I). Therefore (

∨
i∈I ai) ≤ b→ c. Since (

∨
i∈I ai) ∈ Q we obtain that b→ c ∈ Q and

since b ∈ Q we would infer that c ∈ Q, which contradicts the fact that Q ∈ σ(b)∩σ c(c).
Hence σ (

∨
i∈I ai)⊆ AP and then AP

= σ (
∨

i∈I ai).
(2)⇒ (1). Let T = {ai : i ∈ I} ⊆ H be any subset and let A =

⋃
ai∈T σ(ai). It is clear

that A ∈ TS. By hypothesis AP ∈ TS. Hence AP
=
⋃

j∈J σ(b j) for some family {b j} j∈J of

elements of H. Since TP is compact and AP is closed in TP there is a finite subset { j1, . . . , jn}
of J such that AP

=
⋃n

k=1 σ(b jk) = σ (
∨n

k=1 b jk). Let b =
∨n

k=1 b jk . Thus AP
= σ(b) and

hence σ(b) ⊇
⋃

i∈I σ(ai), which means that b is an upper bound of the family {ai}i∈I . Let
c be another upper bound of {ai}i∈I . It follows that σ(c) ⊇

⋃
i∈I σ(ai) and then σ(c) =

σ(c)
P ⊇

⋃
i∈I σ(ai)

P
= AP

= σ(b), because σ(c) is closed in TP. Therefore c≥ b and hence∨
i∈I ai = b. �



104 C. E. SCIRICA AND A. G. PETROVICH

According to the proof of the previous theorem we have that if H is a complete Heyting
algebra, then the correspondence a 7→ σ(a) is an isomorphism of Heyting algebras between
H and PRegSP (χ (H)). Indeed, in this case we have that PRegSP (χ (H)) coincides with
the lattice Clopen(χ (H)) determined by the increasing closed and open sets of χ (H). By
Priestley duality we have that σ is a lattice isomorphism between H and Clopen(χ (H))
and hence automatically preserves implication. Note also that if H is an arbitrary Heyting
algebra then σ(a) is always a pseudoregular open set for every a ∈ H.

3. A TOPOLOGICAL CHARACTERIZATION OF THE DEDEKIND–MACNEILLE
COMPLETION OF HEYTING ALGEBRAS

Definition 4. Let H be a Heyting algebra and let S be a subalgebra of H. Then S is said to
be
∨

-dense (respectively
∧

-dense) in H, if every element of H is supremum (respectively
infimum) of elements of S, i.e., if ∀ h ∈ H, there exists a family {si}i∈I of elements of S
such that h =

∨
i∈I si (respectively h =

∧
i∈I si).

Note that if S is either
∨

-dense or
∧

-dense in H, then S is dense in H.

Lemma 2. Let H be a Heyting algebra and A ∈ PRegSP (χ (H)). Then there exists (ai)i∈I ⊆
H such that

∨
i∈I σ(ai) =

⋃
i∈I σ(ai) = A. Furthermore, if A =

⋃
i∈I σ(ai), then

∨
i∈I σ(ai) =⋃

i∈I σ(ai) = A.

Proof. Since A∈ PRegSP (χ (H)), A∈ TS, thus there is (ai)i∈I ⊆H such that A =
⋃

i∈I σ(ai).

Thus
∨

i∈I σ(ai) =
(⋃

i∈I σ(ai)
P
)0S

=
(

AP
)0S

= A. �

Recall that an injective homomorphism of Heyting algebras is said to be an embedding
of Heyting algebras.

Definition 5. A morphism of Heyting algebras j : H1→ H2 is said to be regular if given a
family {ai}i∈I ⊆ H1 the following two conditions are satisfied:

I) If there exists
∨

i∈I ai ∈H1 then there exists
∨

i∈I j(ai)∈H2 and j(
∨

i∈I ai)=
∨

i∈I j(ai).
II) If there exists

∧
i∈I ai ∈H1 then there exists

∧
i∈I j(ai)∈H2 and j(

∧
i∈I ai)=

∧
i∈I j(ai).

In the case that Im( j) is a
∨

-dense (respectively
∧

-dense) subalgebra of H2 then j is said
to be

∨
-dense (respectively

∧
-dense).

Theorem 6. Let H be a Heyting algebra. Then the correspondence a 7→ σ(a) is a regular,∨
-dense and

∧
-dense embedding between H and PRegSP (χ (H)).

Proof. We know from Theorem 2 that PRegSP (χ (H)) is a complete Heyting algebra and
we know that σ is an order embedding. To prove that σ is a Heyting morphism it only
remains to prove the following facts:

I) σ (a∧b) = σ (a)∩σ (b)

II) σ (a∨b) =
(

σ (a)∪σ (b)
P
)0S

III) σ (a→ b) =
(

σ c (a)∪σ (b)
P
)0S

.

The proof of items I) and II) are immediate. To prove III) note first that(
σ c (a)∪σ (b)

P
)0S

= (σ c (a)∪σ (b))0S . Since σ (a→ b) ⊆ σ c (a)∪σ (b) it follows that

σ (a→ b)⊆ (σ c (a)∪σ (b))0S . To prove the other inclusion take P∈ (σ c (a)∪σ (b))0S and
let c∈H be such that P∈ σ(c) and σ(c)⊆ σ c (a)∪σ (b). Hence σ(c)∩σ(a) = σ(a∧c)⊆
σ(b) and then a∧ c≤ b, which implies c≤ a→ b. Therefore P ∈ σ (a→ b), thus proving
III). It follows from Lemma 2 that σ is

∨
-dense.
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Let us prove that σ is
∧

-dense. Let A ∈ PRegSP (χ (H)) and let Z = {x ∈H : σ(x)⊇ A}.
We claim that A =

∧
x∈Z σ(x) = (

⋂
x∈Z σ(x))0S . It is clear that A ⊆ (

⋂
x∈Z σ(x))0S . Let

P ∈ (
⋂

x∈Z σ(x))0S and take b ∈ H be such that P ∈ σ(b) and σ(b) ⊆
⋂

x∈Z σ(x). Since A
is pseudoregular it is enough to prove that σ(b) ⊆ AP. Suppose it is not the case. Then
we could find elements c,d ∈ H and a prime filter Q of H such that b ∈ Q,c ∈ Q,d 6∈ Q
and σ(b)∩σ(c)∩σ(d)c ∩A = /0. By Lemma 2 we know that A is a union of sets of the
form σ(z) and each one of these elements z satisfies σ(z)⊆ σ((b∧ c)→ d). It follows that
A⊆ σ((b∧ c)→ d). Therefore (b∧ c)→ d ∈ Z and then b≤ ((b∧ c)→ d), which implies
((b∧ c)→ d) ∈ Q. Since Q is implicative we infer that d ∈ Q, a contradiction.

Finally it remains to prove that σ is regular. To this end let {ai}i∈I be a family of elements
of H such that a =

∨
i∈I ai ∈ H exists. To prove that σ(a) =

∨
i∈I σ(ai) we need to prove

that σ
(
a) =

(⋃
i∈I σ

(
ai)

P)0S

. Since ai ≤ a then σ(ai) ⊆ σ(a). Hence
⋃

i∈I σ
(
ai) ⊆ σ

(
a),

which implies that
(⋃

i∈I σ
(
ai)

P)0S

⊆
(

σ
(
a)

P)0S

= σ
(
a). In order to prove the reverse

inclusion note first that since σ(a) ∈ TS then it is enough to prove that σ(a)⊆
⋃

i∈I σ
(
ai)

P
.

Let F ∈ σ(a). Suppose that F /∈
⋃

i∈I σ
(
ai)

P
. Therefore there are

(
b,c ∈ H) such that

F ∈ σ
(
b)∩σ c

(
c) and

(
σ
(
b)∩σ c

(
c)
)
∩
(⋃

i∈I σ
(
ai)
)
= /0. Hence σ

(
b∧ai)∩σ c

(
c) = /0 for

every index i or, equivalently, σ
(
b∧ai)⊆ σ

(
c) for all i ∈ I. Since σ is an order morphism

it follows that b∧ai ≤ c for all i ∈ I and then ai ≤
(
b→ c) for all i ∈ I. Thus a =

∨
i∈I ai ≤(

b→ c). Since F ∈ σ(a) then a ∈ F , thus
(
b→ c) ∈ F . Since b ∈ F then c ∈ F , which

is impossible, because F ∈ σ
(
b)∩σ c

(
c). Thus, F ∈

⋃
i∈I σ

(
ai)

P
. Finally let {ai}i∈I be a

family of elements of H such that a =
∧

i∈I ai exists in H. To prove that σ(a) =
∧

i∈I σ(ai)

we need to prove that σ
(
a) =

(⋂
i∈I σ(ai)

P
)0S

= (
⋂

i∈I σ(ai))
0S . It is plain that σ(a) ⊆

(
⋂

i∈I σ(ai))
0S . Suppose that (

⋂
i∈I σ(ai))

0S * σ(a). Thus there is P ∈ (
⋂

i∈I σ(ai))
0S such

that P 6∈ σ(a). Therefore we could find c ∈ H such that P ∈ σ(c) ⊆ (
⋂

i∈I σ(ai)) and P /∈
σ(a). Then σ(c) ⊆ σ(ai) for every index i, which implies that c ≤ ai ∀i ∈ I. Hence c ≤∧

i∈I ai = a and then σ(c)⊆ σ(a), which contradicts the fact that P∈ σ(c)\σ(a). Therefore
σ is regular. �

Let H be a Heyting algebra. It is known that, up to isomorphism, the Dedekind–MacNeille
completion of H, denoted by DM(H), is the only complete Heyting algebra which is regu-
lar,

∨
-dense and

∧
-dense (see for instance [1], [3]). As a corollary of Theorem 6 we obtain

the following result:

Theorem 7. Let H be a Heyting algebra. Then PRegSP (χ (H)) is isomorphic to DM(H).

Our next task will be to show an explicit isomorphism between PRegSP (χ (H)) and
DM(H) as follows. Given S ⊆ H, let us denote by Sl the set of lower bounds of S and
by Su the set of upper bounds of S. We define

C(H) = {S⊆ H : S = Slu}

with the order given by S ≤ T if and only if S ⊇ T (i.e. the reverse inclusion). It is easy to
check that C(H) is a Heyting algebra isomorphic to DM(H).

For each S ∈C(H) we define US =
⋃

x∈Sl σ(x). Then the map S 7→US is well defined and
is an isomorphism between C(H) and PRegSP (χ (H)). We leave the proof of this fact to the
reader.
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Remark 8. If B is a Boolean algebra then Stone’s topology and Priestley’s topology coincide
on χ (B). Hence PRegSP (χ (B)) = Reg(χ (B)). Thus, the Stone morphism

σ : B→ Reg(χ (B))

a→ σ(a)

is a regular,
∨

-dense and
∧

-dense embedding in a complete Boolean algebra.

4. RELATIONSHIP BETWEEN PRegSP (χ (H)) AND DIFFERENT COMPLETIONS OF
HEYTING ALGEBRAS

Definition 9. Let H be a Heyting algebra. We shall say that H satisfies the S property, if
for every family {xl}l∈L of elements of H and every x ∈ H such that x ≤ s for every upper
bound s of {xl}l∈L, there exists

∨
l∈L{xl}, or there is a finite subset of F ⊆ {xl}l∈L such that

x≤
∨

F .

There are Heyting algebras which do not satisfy the S property. Take, for instance, the
following example.

Let B be the Boolean algebra determined by those subsets A of the real line such that A
is countable or its complement is countable. For each real number i in the interval [0,1] let
xi = {i} and let x = Q∩ [0,1]. If s is an upper bound of {i}i∈[0,1] then [0,1]⊆ s, thus

if s is an upper bound of {xi}i∈[0,1] then x≤ s. (1)

Let s be an upper bound of {xi}. Then [0,1]⊆ s, but [0,1] /∈ B, thus [0,1]( s, so that there
exists P∈ (s\[0,1]). Let s = s\{P}. Since s is not countable it follows that #(sc)≤ℵ0, then
#(sc = sc⋃{P}) ≤ℵ0. Therefore s ∈ B. Since [0,1] ⊆ s, s is an upper bound of {xi}i∈[0,1]
and s≤ s. So we have proved that if s is an upper bound of {xi}i∈[0,1], then there exists s < s
such that s is an upper bound of the family {xi}i∈[0,1].

Therefore this family does not have a supremum in B. (2)

Moreover, if F ⊆ {xi}i∈[0,1] is finite, then
∨

xi∈F{xi} is finite, thus

x�
∨

xi∈F

{xi}. (3)

As a consequence of (1), (2) and (3), B does not satisfy the S property.

Definition 10. Let H and H be lattices. A map i : H→H is a lower morphism of lattices if
i(a∧b) = i(a)∧ i(b). Furthermore, if i is inyective, i is said to be an embedding of lower
morphism.

Theorem 11. Let H and H be Heyting algebras such that H is complete, and let i : H→ H
be an embedding of Heyting algebras. Then

(1) There exists an embedding lower morphism of lattices î : PRegSP (χ (H))→H such
that î◦σ = i

H i //

σ

��

H

PRegSP (χ (H))
î

88

(2) If i : H→H is regular and H has the S property, then î : PRegSP (χ (H))→H is an
embedding of lattices.

(3) If i : H→H is
∨

-dense and regular and H has the S property, then î : PRegSP (χ (H))→
H is an embedding of Heyting algebras.
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Proof. (1) We define

î : PRegSP (χ (H))→ H⋃
l∈L

σ(al)→
∨
l∈L

i(al).

We claim that î is well defined. Let A ∈ PRegSP (χ (H)) and let (al)l∈L and (bt)t∈T ⊆ H
be such that A =

⋃
l∈L σ(al) =

⋃
t∈T σ(bt). We must show that

∨
l∈L i(al) =

∨
t∈T i(bt). Let

l ∈ L. Suppose that i(al) 6≤
∨

t∈T i(bt), then

there is P ∈ χ
(
H
)

such that i(al) ∈ P and
∨
t∈T

i(bt) /∈ P. (4)

i−1 (P) ∈ χ (H) and al ∈ i−1 (P) or, equivalently,

i−1 (P) ∈ σ(al). (5)

Let t ∈ T . If bt ∈ i−1 (P), then i(bt) ∈ P, thus
∨

t∈T i(bt) ∈ P, but that contradicts (4). Thus
(∀t ∈ T ), i(bt) /∈ P or, equivalently, bt /∈ i−1 (P). Hence (∀t ∈ T ) i−1 (P) /∈ σ(bt). Therefore
i−1 (P) /∈

⋃
t∈T σ(bt) =

⋃
l∈L σ(al), but that contradicts (5). Thus, i(al)≤

∨
t∈T i(bt) and l ∈

L is arbitrary, and hence
∨

l∈L i(al)≤
∨

t∈T i(bt). The other inequality is proved analogously.
We have proved that î is well defined as function. Let A =

⋃
l∈L σ(al) and B =

⋃
t∈T σ(bt)∈

PRegSP (χ (H)).

A∧B =

(⋃
l∈L

σ(al)

)
∧

(⋃
t∈T

σ(bt)

)
=
⋃
l∈L

⋃
t∈T

(σ(al)∩σ(bt))

=
⋃
l∈L

⋃
t∈T

(σ(al ∧bt)) .

Thus î(A∧B) =
∨

l∈L
∨

t∈T i(al ∧bt). On the other hand,

î(A)∧ î(B) =

(∨
l∈L

i(al)

)
∧

(∨
t∈T

i(bt)

)
=
∨
l∈L

∨
t∈T

i(al ∧bt).

We have proved that î is a lower morphism of lattices. Let’s see that î is an embedding.
Let A =

⋃
l∈L σ(al) and B =

⋃
t∈T σ(bt) ∈ PRegSP (χ (H)) be such that î(A) ≤ î(B). Then

(
∨

l∈L i(al))≤ (
∨

t∈T i(bt)) In order to prove that A≤ B it is enough to prove that AP ≤ BP.
Suppose it is not the case. Then there is P∈

(
AP\BP

)
. Since P /∈ BP, there are x,z∈H such

that P ∈ σ (x)∩σ (z)c and σ (x)∩σ (z)c ∩B = /0. Since P ∈ AP, /0 6= σ (x)∩σ (z)c ∩A =
σ (x)∩σ (z)c∩ (

⋃
l∈L σ(al)), thus

(∃l0 ∈ L) such that σ(x)∩σ(z)c∩ (σ(al0)) 6= /0. (6)

Thus,
∃Q ∈ σ(x)∩σ(z)c∩σ(al0). (7)

Since σ (x)∩ σ (z)c ∩ (
⋃

t∈T σ(bt)) = /0, then (∀t ∈ T ) σ (x)∩ σ (z)c ∩ σ(bt) = /0. Thus
σ (x)∩ σ(bt) ⊆ σ (z). Since σ is an order embedding, x∧ bt ≤ z or, equivalently, bt ≤
(x→ z). Thus i(bt)≤ i(x→ z) = i(x)→ i(z). Because this inequality is valid for all t ∈ T ,
î(B) =

∨
t∈T i(bt) ≤ i(x)→ i(z). Since (

∨
l∈L i(al)) ≤ (

∨
t∈T i(bt)), (

∨
l∈L i(al)) ≤ i(x)→

i(z). Therefore i(al) ≤ i(x)→ i(z) for every l ∈ L. In particular i(al0) ≤ i(x)→ i(z).
Thus i(x)∧ i(al0)≤ i(x)∧ (i(x)→ i(z)) = i(x∧ z)≤ i(z). Thus x∧al0 ≤ z. Because of (7)
x∧al0 ∈ Q and z /∈ Q, but this is impossible. The contradiction arises because we assumed
that AP � BP.
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(2) Assume now that H satisfies the S property and let i : H→H be regular. We know that
î : PRegSP (χ (H))→H is an embedding lower morphism of lattices. Due to this fact î(A)∨
î(B) ≤ î(A∨B) ∀A,B ∈ PRegSP (χ (H)). Let’s suppose that î(A∨B) � î(A)∨ î(B). A =⋃

l∈L σ(al), B =
⋃

t∈T σ(bt) and A∨B =
⋃

j∈J σ(c j) = (
⋃

l∈L σ(al))∨ (
⋃

t∈T σ(bt)). There-
fore î(A) = (

∨
l∈L i(al)), î(B) = (

∨
t∈T i(bt)) and î(A∨B) =

(∨
j∈J i(c j)

)
. Since î(A∨B)�

î(A)∨ î(B),

there exists j0 ∈ J such that i(c j0)�

(∨
l∈L

i(al)

)
∨

(∨
t∈T

i(bt)

)
. (8)

Then

there exists P ∈ χ
(
H
)

such that i(c j0) ∈ P and

(∨
l∈L

i(al)

)
∨

(∨
t∈T

i(bt)

)
/∈ P. (9)

Hence,

i−1 (P) ∈ χ (H) and i−1 (P) ∈ σ(c j0). (10)

Let l ∈ L. If al ∈ i−1 (P), then i(al) ∈ P, but this contradicts (9). Thus, al /∈ i−1 (P) or,
equivalently, i−1 (P) /∈σ(al). Hence i−1 (P) /∈

⋃
l∈L σ(al)=A. In the same way, i−1 (P) /∈B.

and consequently

i−1 (P) /∈ (A∪B) . (11)

Let F ⊆ {al;bt} be finite. Let M =
∨

F , and let’s suppose that i−1 (P) ∈ σ(M). Since P is
prime, there is x∈F such that i−1(P)∈ σ(x), but this contradicts (9). Thus, i−1 (P) /∈ σ(M).
Because of (10), σ(c j0)* σ(M). Thus c j0 �M. Thus,

if F ⊆ {al;bt} is finite and M =
∨

F , then c j0 �M. (12)

Let x be an upper bound of {al;bt}l∈L,t∈T . Since σ(al)⊆ σ(x) and σ(bt)⊆ σ(x),
(
⋃

l∈L σ(al))∪ (
⋃

t∈T σ(bt)) ⊆ σ(x). Thus A∨B ⊆ σ(x). Since σ(c j0) ⊆ A∨B, σ(c j0) ⊆
σ(x). Thus

c j0 ≤ x ∀x upper bound of {al;bt}l∈L,t∈T . (13)

If c j0 is an upper bound of {al;bt}l∈L,t∈T , c j0 = sup{al;bt}l∈L,t∈T . Since i is regular,
i(c j0) = (

∨
l∈L i(al))∨(

∨
t∈T i(bt)), but this contradicts (8). Thus c j0 isn’t an upper bound of

{al;bt}l∈L,t∈T . If there exists z = sup{al;bt}l∈L,t∈T , then i(z) = (
∨

l∈L i(al))∨ (
∨

t∈T i(bt)).
Thus, because of (9) i(z) /∈ P. Thus z /∈ i−1(P). Because of (13), c j0 ≤ z, but i(c j0) ∈ P or,
equivalently, c j0 ∈ i−1(P), but this is impossible. Thus

@sup{al;bt}l∈L,t∈T . (14)

But (12), (13) and (14) imply H does not have the S property, which is against the hy-
pothesis. The contradiction arises because we supposed that î(A∨B) � î(A)∨ î(B). Thus
î(A∨B) = î(A)∨ î(B). We have proved that î is an embedding of lattices.

(3) Assume now that H satisfies the S property and let i : H→H be
∨

-dense and regular.
Let A =

⋃
l∈L σ(al) and B =

⋃
t∈T σ(bt). Since î is a lower morphism of lattices, î(A)∧
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î(A→ B) = î(A∧B)≤ î(B), thus î(A→ B)≤ î(A)→ î(B). On the other hand,

A→ B =
(

Ac∪BP
)0S

=

(⋂
l∈L

σ c (al)

)
∪

(⋃
t∈T

σ (bt)

)P0S

=

(⋃
k∈K

σ (ck)

)
.

Thus, î(A→ B) =
∨

k∈K i(ck). Let E ∈ H such that

î(A)∧E ≤ î(B). (15)

Since Im(i) is
∨

-dense in H,
(
∃(x j) j∈J ⊆ H

)
: E =

∨
j∈J i(x j). Thus î(A)∧

(∨
j∈J i(x j)

)
≤

î(B). Let j ∈ J. î(A)∧ i(x j) ≤ î(B) or, equivalently, î(A)∧ î(σ (x j)) ≤ î(B). Since î is
an embedding of lattices, A∧σ (x j) ≤ B. Thus, σ(x j) ≤ A→ B, so î(σ(x j)) ≤ î(A→ B)
or, equivalently, i(x j) ≤ î(A→ B), and as a consequence of being j ∈ J arbitrary, E =∨

j∈J i(x j)≤ î(A→ B). Since E, which verifies (15), is arbitrary, î(A)→ î(B)≤ î(A→ B).
�
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