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WHAT IS LOGICAL TRUTH?

CHARLES MCCARTY

[Die Mathematik] bildet eine Art Philosophie mit positiven Resultate; sie
ist aber auch eine Kunst im tiefsten Sinne des Wortes.

—Paul du Bois-Reymond [1910]

Our targets are formal propositional logic and, for it, definitions of logical truth. Here,
formulae of that logic, e.g.

(¬p∧q)→ r,

are called ‘schemes.’ Such metavariables as

Θ(p,q,r)

range over schemes. Substitutions of formally arithmetic sentences for letters like p, q, and
r in schemes play a pivotal role, as well as universal and existential quantification—over
truth-values—binding the p, q, and r places. Throughout, our method of metamathematical
investigation is intuitionistic, although both conventional and intuitionistic mathematicians
can grasp and accept (or reject) the proposed definitions.

1. SENTENTIAL VERSUS VALUATIONAL

What precisely does it mean either to assert or to deny that a scheme of propositional
logic expresses a logical truth? It is a datum that mathematicians of all stripes use the very
same words (in English)—‘logical truth’—either to assert or to deny that the tertium non
datur or TND scheme

p∨¬p

expresses a logical truth. In (the Dutch, French, and German cognates of) those very same
terms, L.E.J. Brouwer and his Amsterdam associates first doubted and later rejected the
logical truth of TND [3]. Clearly, since the famous Grundlagenstreit was not one vast
equivocation, what the intuitionist rejects about the logical truth of TND means exactly,
neither more nor less than, what the conventionalist asserts. If a conventional mathematician
and an intuitionist are to debate the point and disagree, then their respective correlate words,
including ‘logical truth,’ must carry the same meanings in their conflicting statements. (By
the way, when the intuitionist says, ‘Not,’ he or she means just what the conventionalist
means by ‘Not.’) Otherwise, their seemingly conflicting statements may not disagree at all!

Yet, there seem to be two reigning explications (or traditions of explication) of the notion
‘logical truth,’ even within conventional mathematics. On the one hand, there is the tradition
endorsed by David Hilbert and later taken up by W.V.O. Quine, on which logical truth is
defined in explicitly metalinguistic terms: via truth and all allowable substitutions into a
scheme. One finds this endorsement on prominent display in Hilbert and Ackermann’s
Grundzüge [13]:
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It is now the first task for logic to find those combinations of statements that
are always true, regardless whether their component statements represent
true or false assertions. [13, p. 12] [Translation from the German by the
author. Italics as in the original.]

Four or so decades later, Quine pledged allegiance to the same idea:
A logical truth, then, is definable as a sentence from which we get only
truths when we substitute sentences for its simple sentences. [22, p. 50]
[Italics as in the original]

This Hilbert–Ackermann–Quine idea of logical truth is explicitly sentential. It takes con-
crete form by means of Gödel numbers s for sentences of an object language, a numerical
substitution function Sub defined over the numbers, and a predicate Tr on Gödel numbers
marking out truth for sentences of the object language. Accordingly, the sentential charac-
terization of logical truth is also substitutional and Gödelian. For example, the logical truth
of TND is rendered in the sentential way as follows:

∀s. Tr(Sub(s,ppq,pp∨¬pq)).

∀ quantifies universally over natural numbers in a metalanguage, s ranges over code num-
bers of sentences of the object language, corner quotes

p. . .q

signify the mapping from linguistic items to their Gödel numbers, and

Sub(s,ppq,pp∨¬pq)

is the encoded result of substituting the object language sentence numbered s into all ap-
pearances of the sentence letter numbered ppqwithin the Gödelized scheme p∨¬p. Hence,
the display

∀s. Tr(Sub(s,ppq,pp∨¬pq))

may be read, “All results of substituting Gödelized sentences of the object language for p
in the scheme (p∨¬p) yield truths of the object language.”

Experienced foundationalists will be wary of the sentential understanding. For one
thing, it seems to require fussy metamathematical filigree: encodings of individual sym-
bols, schemes and their Gödel numberings, definable substitution functions, not to mention
axiomatized truth predicates or even full-bore truth definitions. Clarity is a friend to cor-
rectness, while filigree is too often its bitter enemy. Perhaps more telling is that sentential
logical truth is too closely tied to the substitutions on offer in the chosen object language,
and hence to the expressive limitations on it. But what is true logically should not be cir-
cumscribed contingently, cooped up by what we just happen to have learnt to enunciate to
date.

Given that, the Russell–Tarski valuational conception of logical truth comes as a welcome
alternative. Russell wrote this in his Introduction to Mathematical Philosophy:

Not only the principles of deduction, but all the primitive propositions of
logic, consist of assertions that certain propositional functions are always
true. If this were not the case, they would have to mention particular things
or concepts—Socrates, or redness, or east and west, or what not—and
clearly it is not the province of logic to make assertions which are true con-
cerning one such thing or concept but not concerning another. It is part of
the definition of logic (but not the whole of its definition) that all its proposi-
tions are completely general, i.e. they all consist of the assertion that some
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propositional function containing no constant terms is always true. [23,
p. 159]

Admittedly, Russell was not always consistent in his use of the term ‘propositional func-
tion.’ This time, however, its referent is plain: it denotes abstract functions that are either
nullary—and hence truth-values themselves—or n+1-ary—hence any functions from enti-
ties into truth-values. These functions are not sentences, sentence forms, or other shards of
syntax, but echt values of 0th or higher order. With propositional functions, it is easy to set
out Russell’s analysis of ‘the TND is logically true:’

∀p (p∨¬p)

with variable ‘p’ ranging over truth-values, and with ∨ and ¬ denoting the truth functions
familiar to freshmen. (We will not follow Russell into the thicket of his type theory by
earmarking symbols with indices for types or orders.)

In his [26], Tarski enunciated a definition of logical consequence, and hence of logical
truth, in equally valuational terms, employing quantification over truth-values:

The sentence X follows logically from the sentences of the class K if and
only if every model of the class K is also a model of the sentence X . [Trans-
lation by J.H. Woodger. Italics as in the original.]

A Tarskian model of a propositional scheme is an assignment of truth-values to variables,
and, according to the above definition, a sentence X is logically true when it is true in every
such model. Therefore, TND will be logically true by Tarski’s lights, as by Russell’s, just
in case

p∨¬p
for every truth-value p.

Now, unlikely as it may seem, could these two disparate efforts at construing the one no-
tion of logical truth—sentential versus valuational—be co-extensive? Are there essentially
true logical relations on truth-values, ones that logicians (and not just logicians of intuition-
istic stripe) wish to capture and study, that cannot be captured sententially, in terms of coded
sentences of an object language, substitutions of them into schemes, and a truth predicate?
If they are co-extensive, what are the precise (intuitionistic) mathematical conditions un-
der which they are provably equivalent extensionally? What is the full mathematical cost
incurred—to be paid in mathematical assumptions—when proving that the two coincide, if
such proof be possible?

2. TRUTH-VALUES, SINGLETONS, AND POWERSETS

Truth-values are the members of the powerset of singleton {0},
P({0})

or P for short. For p ∈P , truth-value p is TRUE just in case 0 ∈ p, and FALSE when
0 /∈ p. Either conventionally or intuitionistically, P is the perfect choice for the official
set of truth-values, since it stands in natural bijective correspondence with the quotient,
under intuitive equivalence, of the collection of mathematical sentences. Map mathematical
sentence A into the set

F(A) = {0 | A is true},
which is a truth-value. It is easy to see that, for all sentences A and B,

• A is true if and only if 0 ∈ F(A),
• A↔ B is true if and only if F(A) = F(B),
• (A∧B) is true if and only if 0 ∈ (F(A)∩F(B)),
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36 CHARLES MCCARTY

• (A∨B) is true if and only if 0 ∈ (F(A)∪F(B)), and
• (A→ B) is true if and only if 0 ∈ (F(A)⇒ F(B)), where p⇒ q is the truth-value

{0 | if p, then q} ∈P.

The function taking any particular truth-value p ∈P into the mathematical sentence

0 ∈ p

is inverse to F , making F bijective.
In conventional mathematics standardly interpreted, P contains precisely the elements

named
1, {0}, or TRUE,

and
0, /0, or FALSE,

and no others. Intuitionistically, P surely contains both TRUE and FALSE, but is uncount-
able in total size. P is also a complete Heyting algebra, a distributive lattice with all infs

∧
and sups

∨
, and such that

a∧
∨
i∈I

bi =
∨
i∈I

(a∧bi),

for all elements a and I-indexed families of elements bi. Moreover, P is a natural epi-
morphic Heyting image of every powerset P(X) with X ∈ V, V the universe of all sets,
whenever X has at least one member. To see this, let a ∈ X and map P(X) onto P by
sending A⊂ X into

{0 | a ∈ X} ∈P.

Moreover, P is characterized by this property: any complete Heyting algebra A that is an
epimorphic image of every powerset of an inhabited set is itself isomorphic to P . For the
proof, let F be a Heyting epimorphism from P onto A , and let 1A be the greatest member
of A . Assume that p,q ∈P . Recall that, for all p ∈P ,

p =
⋃
0∈p

{1}.

(The foregoing is a set-theoretical rendering of the statement 0 ∈ p↔ 0 ∈ p∧ 1.) Then,
from the assumption that

F(p) = F(q),
it follows that

F(
⋃
0∈p

{1}) = F(
⋃
0∈q

{1}),

and that ∨
0∈p

{F(1)}=
∨
0∈q

{F(1)},

since F is a morphism of Heyting algebras. Therefore,∨
0∈p

{1A }=
∨
0∈q

{1A }.

Once again, the latter holds because F is a Heyting epimorphism. So,

1A ∈
∨
0∈p

{1A } if and only if 1A ∈
∨
0∈q

{1A }.

Therefore,
0 ∈ p if and only if 0 ∈ q,
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and
p = q.

In consequence, f is a Heyting isomorphism between P and A . Informally put, this result
shows that P is the unique (up to isomorphism) complete Heyting algebra in which all
setwise universal distinctions are accurately reflected. (No distinction can be registered in
the smaller powerset P( /0) with its single element /0.) Every way of demarcating a subset,
using either sets or classes, from out of any set-sized domain, can be mapped so faithfully
into P that the elements of P mirror the demarcation logically.

On this set-theoretic treatment of truth-values, the valuational expression for the logical
truth of TND,

∀p (p∨¬p),

is now captured in the purely set-theoretic condition

0 ∈
⋂

p∈P
(p ∪ ∼ p),

where p belongs to P ,
⋂

is intersection, ∪ pairwise union, and∼ relative complement. The
logical truth of the TND now boils down to the assertion that, given any p in P , 0 belongs
either to p or to p’s complement. Henceforth, even though we may write such things as

∀p Θ(p)

to convey the valuational logical truth of scheme Θ, we will, behind the scenes, be thinking
of it in strictly set-theoretic terms.

At this point, the paired mutual inferences, expressed in set theory, between the two def-
initions are open to parametric investigation, in other words, without explicit quantification
over schemes themselves. First, we ask if (and why) the inference from valuational logical
truth to sentential logical truth for a fixed but arbitrary scheme Θ(p), namely,

from ∀p. Θ(p) to ∀s. Tr(Sub(s,pxq,pΘ(x)q)),

(which we call V⇒ S) holds for each scheme Θ(p). Second and conversely, we ask if (and
why) the converse inference from sentential to valuational,

from ∀s. Tr(Sub(s,pxq,pΘ(x)q)) to ∀p. Θ(p),

(or S⇒V) is true, if it is. In these investigations, both definitions are set out in an interpreted
or uninterpreted second-order metalanguage, either classical second-order arithmetic PAS
or its intuitionistic counterpart HAS [28, p. 164ff.]; or perhaps the classical set theory ZF
or its intuitionistic counterpart IZF [29, p. 624ff.]. HAS is formulated with basic predicates
and requisite axioms governing the primitive recursive number-theoretic relations. We also
assume that the object language is that of elementary Peano–Dedekind arithmetic, and that
this language is a sublanguage of the metalanguage, modulo some obvious definitions, e.g.,
of arithmetic notions, in a set-theoretic language. Consequently, any formal semantics at-
tached to the metalanguage applies without further ado to the object language as well. Such
a semantics is to be specified within an interpreted, informal metametalanguage, which may
be a suitable second-order set theory, conventional or intuitionistic.

3. THE EXPRESSIBILITY ASSUMPTION

To check that V⇒ S is correct mathematically, we work informally within an interpreted
metalanguage. For the sake of example only, let Θ(p) be the TND scheme

p∨¬p.
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Our results are not restricted to that scheme. Let s be the Gödel number of an arbitrary
sentence in the object language. Let Tr define truth for the object language as Tarski would
have had it or let Tr be governed by axioms sufficient to guarantee that the Tr predicate
commutes with the connectives. Then,

Tr(s)

is a sentence of the metalanguage. Hence, it makes sense to consider

{0 : Tr(s)},
which is a member of P . The valuational assertion of logical truth, namely,

∀p(p∨¬p),

implies, when construed within set theory, that

0 ∈ ({0 : Tr(s)}∪{0 : ¬Tr(s)}).
Therefore,

Tr(s)∨¬Tr(s).
By the individual clauses in the truth definition (or truth axioms), it now follows that

Tr(ps∨¬sq).

Using fundamental properties of Gödelian arithmetization, we see that

Tr(Sub(s,pxq,px∨¬xq)).

Generalizing, one obtains,

∀s. Tr(Sub(s,pxq,px∨¬xq)).

As stated above, this argument goes through for any scheme Θ(p) drawn from the language
of standard propositional logic.

A proof of parametric inference S⇒V in the converse direction—from sentential logical
truth to valuational—seems to require a further assumption. Specifically, one needs to be
assured that, for every truth-value p, there is a sentence s of the object language bearing
precisely p as truth-value, in symbols,

∀p ∃s(Tr(s)↔ 0 ∈ p).

We refer to this as the ‘Expressibility Assumption’ or EA. (You must distinguish EA from
the internal comprehension scheme,

∃p(p↔Θ(q,r)),

expressed in the notation of this essay. It is required that p be distinct from q and r. Gabbay
treated the comprehension scheme in his [8] as a[n object-language] principle of second-
order intuitionistic propositional logic.) Now, assume that TND is logically true substitu-
tionally,

∀s. Tr(Sub(s,pxq,px∨¬xq)), (*)
and let p be an arbitrary member of P . By EA,

∃s(Tr(s)↔ 0 ∈ p).

From (*), we obtain
Tr(ps∨¬sq),

where s is a sentence whose existence EA guarantees. By the commutativity of Tr with the
connectives,

Tr(s)∨¬Tr(s).
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Therefore, from EA once again, we know that

0 ∈ p∨0 /∈ p.

Because p was an arbitrary member of P , we have that

0 ∈
⋂
p∈P

(p ∪ ∼ p).

In other words,
∀p(p∨¬p)

holds, and TND is logically true in the valuational sense. Please note that the foregoing
reasoning is conventionally, as well as intuitionistically, cogent and will go through not
merely for TND but for any propositional scheme.

If, provably in the metatheory, there exist in P only the two truth-values TRUE and
FALSE or 0 and 1, then EA can be demonstrated, provided that the object language is
minimally satisfactory. In that kind of language, there will be sentences s1 and s2 such that,
in the metalanguage, one can show that Tr(s1) and that ¬Tr(s2). Hence, each of the two
truth-values is the value of some object-language sentence, that is,

∀p ∈P ∃s(Tr(s)↔ 0 ∈ p).

Upon such reflections as these, it may seem at first that EA is always mathematically nuga-
tory. Notably, that is not the case: EA is not provable intuitionistically from the axioms of
ZF set theory, as we now demonstrate. Let the metatheory be IZF, first-order intuitionistic
Zermelo–Fraenkel set theory, in a formal language appropriate to that theory. IZF includes
the ZF axioms formulated so as not to imply the TND; vide [1]. Let the object language
be that of elementary, first-order Peano–Dedekind arithmetic. We continue to assume that
the latter language is included within the former via translation. Then, take for a model of
the metatheory V(R), first cousin to Scott’s original topological interpretation of analysis
[24] extended to set theory along the lines of [12]. For the metametatheory, adopt conven-
tional ZF. In V(R), formulae of set theory and arithmetic take on topological values that
are open subsets of the real line R. This interpretation satisfies all the axioms of IZF. In
the metametatheory, one can prove that, for any sentence φ of elementary arithmetic,

either [[φ ]] = /0 or [[φ ]] = R.

Consequently, in the metatheory,

V(R) � ∀s. Tr(Sub(s,pxq,px∨¬xq)).

However,
∀p (p∨¬p)

cannot hold in the metatheory, for in Scott’s model, TND fails strongly:

V(R) � ¬∀p (p∨¬p).

Therefore, over V(R), the statement that every truth-value is the value of some sentence of
the object language, that is EA, fails too, and as well as the inference S⇒V that it licenses.
Therefore, we see that

Theorem. In the strictly intuitionistic metamathematics IZF, one cannot prove S⇒ V.
Consequently, in the same metatheory, one cannot prove the Expressibility Assumption
EA. �

The sentential definition of the logical truth of a scheme does not imply the valuational
definition in intuitionistic metamathematics, and we have a ready counterexample in the
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scheme for TND. We cannot derive, from the axioms of full, standard, first-order set the-
ory without TND, the equivalence between the Quine–Hilbert, sentential characterization
and the valuational characterization—in terms of propositional functions—that Russell and
Tarski adopted. The inference S⇒ V linking the two characterizations and the statement
EA are both independent of the axioms of intuitionistic set theory. (Incidentally, this in-
dependence theorem should not be tossed aside as some further, ‘obvious’ confirmation of
a fatal logical weakness in IZF. Recall that IZF is more than sufficient unto the needs of
Bishop-style analysis. Once again, vide [1].)

4. S⇒ V AND EA IN INTUITIONISTIC METAMATHEMATICS

The precise status—within intuitionistic metamathematics—of the inference S⇒ V as
well as that of EA can now be determined. With the intuitionistic second-order arithmetic
HAS as metatheory, neither the correctness of S⇒V nor that of EA implies TND. In addi-
tion, neither implies the validity of any scheme of propositional logic underivable in Heyt-
ing’s formal propositional calculus. Therefore, neither breaks currently recognized bounds
on intuitionistic logical derivability. In addition, we prove that, over the same metatheory,
S⇒ V does not itself derive EA.

Theorem. The Expressibility Assumption EA and, hence, the inference S⇒ V do not
imply TND within the intuitionistic second-order arithmetic HAS.

Proof. Until further notice, the metametatheory will be conventional. Let S be Sierpinski
space with elements α and β such that {β} is open in S, but {α} is not. Let A be the
standard model of PAS, conventional second-order arithmetic. Let B be a nonstandard or
Henkin model of PAS together with the formal arithmetic sentence

PAS is inconsistent,
as Gödel’s Second Incompleteness Theorem allows [10]. The domain |A| of A is identified
with the standard part of B. Then, forcing for HAS is defined over S, interpreting second-
order variables so as to range over pairs of subsets 〈A,B〉 drawn respectively from A and B
that are allowable; cf. [27, p. 389ff.] and [28, pp. 166–167].

Definition. The pair 〈A,B〉 is allowable whenever A is any subset of the domain |A| of A
while B is a subset of domain |B| that exists in the model B and is such that A⊆ B.

Of course, both A and B may be empty. Clearly, for every A ⊆ |A| there is at least one
B such that 〈A,B〉 is allowable. In the sequel, whenever such expressions as ‘〈A,B〉’ or
‘〈C,D〉’ appears, it is assumed that 〈A,B〉 and 〈C,D〉 are allowable.

The arithmetic fragment of the forcing relation is defined as usual for the standard logical
signs as in [25]. To interpret formal statements of set membership, one requires that

α 
 a ∈ 〈A,B〉 if and only if A � a ∈ A,

and
β 
 a ∈ 〈A,B〉 if and only if B � a ∈ B.

For universal set quantification, the relevant conditions are

α 
 ∀X . φ(X) if and only if ∀〈A,B〉 [α 
 φ(〈A,B〉) and β 
 φ(〈A,B〉)],
while

β 
 ∀X . φ(X) if and only if ∀〈A,B〉 . β 
 φ(〈A,B〉).
For existential quantification, the condition

α 
 ∃X . φ(X) if and only if ∃〈A,B〉 . α 
 φ(〈A,B〉)
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holds, and analogously for β . The partially ordered model so defined we call M .

That forcing in M is natural or persistent from α to β is as expected.

Proposition 1. For all formulae φ in the language of HAS and all pairs 〈A,B〉, if α 

φ(〈A,B〉), then β 
 φ(〈A,B〉).

Proof. By induction on formulae. For example, let α 
 ∀X . φ(X ,〈A,B〉). Then, by defini-
tion, for all pairs 〈C,D〉,

α 
 φ(〈C,D〉 ,〈A,B〉),
and

β 
 φ(〈C,D〉 ,〈A,B〉).
So, for all pairs 〈C,D〉, β 
 φ(〈C,D〉 ,〈A,B〉). Therefore, once again from the forcing
definition, one sees that β 
 ∀X . φ(X ,〈A,B〉). �

For pure second-order sentences, forcing at β and truth in the structure B coincide ex-
tensionally.

Proposition 2. For all formulae φ in the language of HAS and all pairs 〈A,B〉, β 
 φ(〈A,B〉)
if and only if B � φ(B).

Proof. First, by definition, β 
 a ∈ (〈A,B〉) if and only if B � a ∈ B. Second, β is the
terminal node in S. �

It remains only to check that the axioms of HAS are forced at α .

Proposition 3. For any axiom φ of HAS, α 
 φ .

Proof. For the sake of example, we verify the forcing of complete induction and full com-
prehension.

For Induction: Proposition 2 already tells us that β forces Induction. Let Sx be the
formal expression, in the language of HAS, for the successor of x. As for α , assume

α 
 [0 ∈ 〈A,B〉∧∀x(x ∈ 〈A,B〉 → Sx ∈ 〈A,B〉)].

Then, by definition of forcing,
A � 0 ∈ A

and
A � ∀x(x ∈ A→ Sx ∈ A).

Because A � PAS,
A � ∀x. x ∈ A.

From Proposition 1, it follows that

β 
 0 ∈ 〈A,B〉∧∀x(x ∈ 〈A,B〉 → Sx ∈ 〈A,B〉).

Thanks to Proposition 2 and B � PAS, we know that

β 
 ∀x. x ∈ 〈A,B〉 .

Therefore, again by the definition of 
,

α 
 ∀x. x ∈ 〈A,B〉 .
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For Comprehension: Since B � PAS, for any formula φ not containing the second-order
variable X and any pair 〈C,D〉, we know that

β 
 ∃X∀x(x ∈ X ↔ φ(x,〈C,D〉)).
Consider the pair 〈A,B〉 where

A = {a ∈ |A| : α 
 φ(a,〈C,D〉)},
and

B = {b ∈ |B| : β 
 φ(b,〈C,D〉)}.
By Proposition 1, 〈A,B〉 is allowable. From the definition of 〈A,B〉, one concludes that, for
all a ∈ |A|∪ |B|,

α 
 a ∈ 〈A,B〉 if and only if α 
 φ(a,〈C,D〉),
and

β 
 a ∈ 〈A,B〉 if and only if β 
 φ(a,〈C,D〉).
Therefore,

α 
 ∃X∀x(x ∈ X ↔ φ(x,〈C,D〉)). �

In the model M for HAS,
∀p ∃s(Tr(s)↔ 0 ∈ p)

obtains. As for the range of the variable ‘p’ above, ‘p’ has at most three allowable values:
〈 /0, /0〉, 〈 /0,{0}〉, and 〈{0},{0}〉. For the first of those, ‘0 = 1’ is an arithmetic sentence
whose code number s1 is such that

α 
 (Tr(s1)↔ 0 ∈ 〈 /0, /0〉).
For the second, ‘PAS is inconsistent’ is an arithmetic sentence whose code s2 is such that

α 
 (Tr(s2)↔ 0 ∈ 〈 /0,{0}〉).
Finally, ‘0 = 0’ is an arithmetic sentence whose code s3 is such that

α 
 (Tr(s3)↔ 0 ∈ 〈{0},{0}〉).
Plainly, α does not force ‘PAS is inconsistent or PAS is not inconsistent.’ So, EA and a
fortiori S⇒ V do not imply, in intuitionistic second-order arithmetic, TND. �

Notes:
(1) As remarked, the proof of this theorem calls upon a conventional metametalogic,

at least in the assumption of model completeness for predicate logic, namely, that
every consistent set of formal sentences has a model. Such an assumption is not cor-
rect intuitionistically; it implies the nonintuitionistic Law of Testability or TEST:

∀p(¬p∨¬¬p)

[18], [4], and [5]. However, all is not lost. Friedman [7] has shown, consistently
with intuitionistic mathematics, that classical set theory is conservative over intu-
itionistic set theory for Π0

2 sentences of arithmetic. The statement that EA does
not imply TND is a formal nonderivability statement. It is therefore arithmetic,
specifically Π0

1. Therefore, by Friedman’s result, there must be an intuitionistically
allowable proof of the theorem.

Alternatively, one could conduct the reasoning of the above proof within the
hereditarily stable fragment of intuitionistic third-order arithmetic. That fragment
is the image of the Gödel–Gentzen negative translation [11], [9], so the necessary
classical reasoning will go through. Again, because the nonderivability statement is
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Π0
1, it is absolute for the negative translation. As a result, it is provable in intuition-

istic arithmetic of the third order.
(2) For later use, we now mention that TEST holds true under the forcing interpretation

described in the preceding proof.

5. EA AND THE THEOREMS OF PROPOSITIONAL LOGIC

In HAS, one cannot show that EA or S⇒ V implies the validity (either sentential or
valuational) of any scheme of propositional logic not already a theorem of Heyting’s propo-
sitional logic. Therefore, although the intuitionist can demonstrate neither EA nor that
Hilbert and Quine’s definition of the logical truth of a scheme implies Russell and Tarski’s,
it is open to the intuitionist to adopt both the assumption and the inference without damaging
the range of intuitionistic validity, formally delimited.

Theorem. Let φ(p,q) be any propositional scheme in the atoms p and q. If φ(p,q) is not a
theorem of Heyting’s propositional logic, then “φ(p,q) is a logical truth valuationally” and
“φ(p,q) is a logical truth sententially” are both underivable in HAS either from EA or from
S⇒ V.

Proof. It is entirely for the sake of example that the scheme φ(p,q) is limited to two propo-
sition letters. The theorem and its proof apply to any propositional scheme. The argument
here echoes Smorynski’s [25] model-theoretic proof of de Jongh’s Theorem.

Assume φ(p,q) to be a propositional scheme in p and q that is not a theorem of Heyting’s
formal propositional logic. Then, there is a finite frame 〈K,5〉 in the Jaskowski sequence,
and hence a tree, with bottom node α and number of terminal nodes n ∈ N such that α 1
φ(p,q) [14]. Let the terminal nodes of 〈K,5〉 be numbered 0 through n− 1. In frames of
the Jaskowski sequence, each node is precisely characterized by the set of terminal nodes
above it. Thanks to Myhill’s proof of the Theorem of Gödel, Rosser, and Mostowski [21],
there are n sentences φi, i < n, in the language of HAS that are mutually independent over
the classical second-order arithmetic PAS. By the conventional completeness theorem of
Henkin, for each i < n, there is a model Ai of HAS∪{φi∧

∧
j 6=i¬φ j}.

We use these models to construct, on the frame 〈K,5〉, a forcing model MK for HAS
that satisfies EA, but does not satisfy φ(p,q). For decorating the frame, I attach model Ai
to the terminal node numbered i. To all other nodes, the standard model gets attached. For
values of the second-order variables of the forcing model, I take all families

F = λβ ∈ K. Aβ

of sets with members drawn from the domains of the models that are allowable in that, for
all β , γ ∈ K, such that β 5 γ ,

F(β )⊆ F(γ).

Forcing is defined as usual except that, for atomic formulae of the form a ∈ F , for F an
allowable family as above and β ∈ K,

β 
 a ∈ F if and only if a ∈ F(β ).

Then, as in the proof of the theorem of the last section, it is straightforward to check that
MK is a model for HAS.

To see that MK forces EA and therefore S⇒ V, let β be any node of 〈K,5〉. Let j
and k, j 6= k < n, be all the terminal nodes that lie above β . (β was selected with two
terminal nodes above it for the sake of example only.) Take ψβ to be the arithmetic formula
¬¬(φ j ∨φk). ψβ is forced only at β and those nodes of K that lie above β .
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In the model MK , the truth-values are the appropriate families L0 where L is an 5-
upward-closed subset of K and

0 ∈ L0(β ) if and only if β ∈ L.

Now, let L be an 5-upward-closed subset of the frame. Since the frame is finite, L is
determined by its 〈K,5〉-minimal nodes γ j, j <m for some m. Take ψL to be the disjunction∨

ψγ j for j < m. Then, ψL is such that

Tr(ψL)↔ 0 ∈ L0.

Therefore,
α 
 ∀p ∃s(Tr(s)↔ 0 ∈ p).

The propositional formula φ(p,q) fails to be sententially valid in MK because

α 1 φ(ψM,ψN),

where M is the upward closed set that is the value of the atom p in the original frame and N
is that for q. Also, the construction shows that there are arithmetic sentences sM and sN that
are forced precisely at the nodes of M and N, respectively. �

Note. The metametamathematics of the proof as it stands is conventional. Once again, as
above, we know that there is an intuitionistic proof of the underivability results thanks to
the conservative extension theorem of [7].

6. MORE ON S⇒ V AND EA IN INTUITIONISTIC METAMATHEMATICS

It remains to ask if S⇒ V is, over intuitionistic formal theories, tantamount to EA.

Theorem. In the intuitionistic second-order arithmetic HAS, S⇒ V does not derive EA.

Proof. For each frame K of the Jaskowski sequence S , form the model MK as in the
preceding proof. Also, construct two extra identical copies M1 and M2 of the forcing
model M over Sierpinski space employed in Section 4 supra. Then, glue these models
together in the familiar fashion over a single bottom node α—as in [25]—to obtain the
infinite joint model

M3 = ΣK∈S MK +M1 +M2.

M3 cannot satisfy EA, since the top nodes in each of M1 and M2 determine truth values of
M3 that cannot be distinguished by first-order arithmetic sentences.

To see that S⇒ V holds in M3, note first that, in virtue of the preceding proof, the
inference S⇒ V is forced at every node in the frame except (perhaps) for α . Now, let
Θ(p) be any propositional scheme. Since derivability in Heyting’s propositional logic is
decidable, either ` Θ(p) or 0 Θ(p). If the former, then HAS proves that Θ(p) is valid in
the valuational sense. Therefore,

α 
 ∀p Θ(p)
and this instance of S⇒V holds at α . On other hand, if Θ(p) is not a theorem of Heyting’s
propositional logic, then there is a frame K in S whose the bottom node β in the frame of
M3 is such that

β 1 ∀s(Tr(s,ppq,pΘ(p)q)).
Therefore,

α 1 ∀s(Tr(s,ppq,pΘ(p)q)),
and the proof is complete. �
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Again, via the kinds of argument set out in the note at the end of Section 4, one can show
intuitionistically that there are fully intuitionistic proofs of the underivability results of this
section.

7. COMPLETENESS AND LOGICAL TRUTH: QUESTIONS FROM DANA SCOTT

Now, we return to working within strictly intuitionistic metatheories.
At first glance, there might seem to be theoretical ties, even intuitionistically, between

EA and versions of logical completeness. Some readers may recall Quine’s discussion [22]
of the conventional mathematical implications between (what we here call) S⇒ V and the
Hilbert-Bernays form of the classical Completeness Theorem for first-order predicate logic.
Dana Scott has asked if there are any such relations of significance obtaining, over IZF or
HAS, between the Expressibility Assumption EA and either strong completeness or model
completeness for intuitionistic propositional logic. (Scott posed his questions during the
Scottfest Colloquium at the Department of Computer Science of Carnegie-Mellon Univer-
sity on 11 October 2013.)

Definitions. Here, ` stands for the formal derivability relation of Heyting’s intuitionistic
propositional logic.

(1) Formal intuitionistic propositional logic is strongly complete just in case, for all
propositional schemes φ and all sets Γ of schemes, if Γ � φ then Γ ` φ . In this
definition, ‘�’ can be defined with respect to either assignments of truth-values à la
Tarski or frames.

(2) Formal intuitionistic propositional logic is weakly complete just in case, for all
propositional schemes φ , if � φ , then ` φ . This time, ‘�’ is defined with respect to
frames exclusively.

(3) Formal intuitionistic propositional logic is model complete just in case, for all sets
Γ of propositional schemes, if Γ is consistent (relative to intuitionistic propositional
logic), then there is a model M such that M � Γ. Once again, either frames or
Tarskian assignments can determine the relevant models.

We note in advance that, because strong completeness entails TND in HAS [19], it also
entails model completeness. Model completeness does not entail strong completeness, since
the Law of Testability TEST is tantamount to model completeness [4], but does not imply
TND. Heyting’s ` is decidable when restricted to single formulae; hence, weak complete-
ness, as enunciated above, is a theorem of HAS and IZF. Therefore, weak completeness
cannot be used to deduce strong completeness or model completeness within IZF.

The following results, relevant to answering Scott’s questions, are provable.

Theorems. Over HAS,
(1) EA does not derive model completeness,
(2) EA does not derive strong completeness,
(3) Strong completeness derives EA, but
(4) Model completeness does not derive EA, and
(5) Weak completeness does not derive EA.

Proofs.
(1) As proved in Section 4, EA does not derive TEST.
(2) This follows from the theorems of Section 4 because strong completeness derives

TND.
(3) Again, since strong completeness implies TND in HAS, it entails EA.
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(4) TEST holds in the forcing model M over Sierpinski space of Section 4, but EA
does not. Therefore, model completeness—equivalent to TEST over HAS—cannot
derive EA.

(5) As proved in Section 3, EA is not a theorem of HAS; so, weak completeness cannot
derive EA in HAS. �

8. EA AND THE BROUWER–KRIPKE SCHEME

EA bears a more than superficial resemblance to a(n in)famous reduction principle of
intuitionistic higher mathematics, the Brouwer–Kripke Scheme or BKS:

∀p ∃ f ∈ (N⇒ N) (p↔∃n ∈ N . f (n) = 0),

where N⇒N is the set of all total, natural-number-valued functions on the natural numbers
N. John Myhill [20] first recommended adding BKS to systems of intuitionistic analysis
to capture thereby Brouwer’s theory of the creating subject [2]. Like BKS, EA fails in the
Kleene realizability interpretation extended to HAS or IZF [16], [17]. More generally, EA
will not hold under any interpretation of IZF—such as Kleene realizability—that satisfies
the Uniformity Principle UP, where UP is the statement that every total, natural-number-
indexed covering of P is univalent:

∀R [∀p ∈P ∃n ∈ N . R(p,n)→∃n ∈ N ∀p ∈P. R(p,n)].

Please recall that the ‘s’ variable in EA ranges over natural numbers that Gödelize sentences
of arithmetic.

Brouwer’s use of the creating subject can be recovered by using BKS to transform asser-
tions of invalidity in logic into strong counterexamples in analysis. For example, from the
fact that TEST is invalid, Brouwer argued via BKS (in effect) that it is false that every real
number different from zero is also at some positive distance apart from zero [29, pp. 842–
843]. In similar fashion, one could reason via EA from general results about invalidity to
their arithmetical instantiations. For example, given EA, it follows from the invalidity of
TEST,

¬∀p(¬p∨¬¬p),
that

¬∀s. Tr(p¬s∨¬¬sq).
The totality of such reductive inferences from EA yields an obvious valuational correlate to
de Jongh’s Maximality Theorem and its extensions [15]. Since the relevant completeness
theorems, e.g., for all schemes Θ(p),

`Θ(p) if and only if ∀p ∈P. Θ(p)

are underivable in IZF, de Jongh’s result is not itself obtainable in a straightforward fashion
from its valuational correlate.
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[25] Smoryński, Craig [1973] Applications of Kripke models. A. Troelstra (ed.) Metamathematical investiga-

tion of intuitionistic arithmetic and analysis. Lecture Notes in Mathematics. Volume 344. Berlin, DE:
Springer-Verlag. pp. 324–391. MR 0444442.

[26] Tarski, Alfred [1936] Über den Begriff der logischen Folgerung. Actes du Congrès International de
Philosophie Scientifique. Volume 7. (Actualitiés Scientifique et Industrielles. Volume 394.) Paris. pp. 1–
11. Translated and reprinted as On the concept of logical consequence. Logic, Semantics, Metamathe-
matics. Papers from 1923 to 1938. Second edition. J.H. Woodger (tr.) J. Corcoran (ed.) Indianapolis, IN;
Hackett Publishing Company, Inc. 1983. pp. 409–420. MR 0736686.

[27] Troelstra, Anne (ed.) [1973] Metamathematical Investigation of Intuitionistic Arithmetic and Analysis.
Lecture Notes in Mathematics. Volume 344. Berlin, DE: Springer-Verlag.

Actas del XIV Congreso Dr. Antonio A. R. Monteiro (2017), 2019

http://www.ams.org/mathscinet-getitem?mr=2376852
http://www.ams.org/mathscinet-getitem?mr=0520186
http://www.ams.org/mathscinet-getitem?mr=0360222
http://www.ams.org/mathscinet-getitem?mr=1513060
http://www.ams.org/mathscinet-getitem?mr=1549910
http://www.ams.org/mathscinet-getitem?mr=0555552
http://www.ams.org/mathscinet-getitem?mr=0015346
http://www.ams.org/mathscinet-getitem?mr=0863332
http://www.ams.org/mathscinet-getitem?mr=2034749
http://www.ams.org/mathscinet-getitem?mr=2467219
http://www.ams.org/mathscinet-getitem?mr=0216940
http://www.ams.org/mathscinet-getitem?mr=0302425
http://www.ams.org/mathscinet-getitem?mr=0469684
http://www.ams.org/mathscinet-getitem?mr=1926595
http://www.ams.org/mathscinet-getitem?mr=0228331
http://www.ams.org/mathscinet-getitem?mr=0444442
http://www.ams.org/mathscinet-getitem?mr=0736686


48 CHARLES MCCARTY

[28] Troelstra, Anne & Dirk van Dalen [1988a] Constructivism in Mathematics: An Introduction. Volume
I. Studies in Logic and the Foundations of Mathematics. Volume 121. Amsterdam, NL: North-Holland.
MR 0966421.

[29] Troelstra, Anne & Dirk van Dalen [1988b] Constructivism in Mathematics: An Introduction. Volume
II. Studies in Logic and the Foundations of Mathematics. Volume 123. Amsterdam, NL: North-Holland.
MR 0966421.

DEPARTMENT OF PHILOSOPHY, INDIANA UNIVERSITY, USA
E-mail: dmccarty@indiana.edu

Actas del XIV Congreso Dr. Antonio A. R. Monteiro (2017), 2019

http://www.ams.org/mathscinet-getitem?mr=0966421
http://www.ams.org/mathscinet-getitem?mr=0966421

	1. Sentential versus valuational
	2. Truth-values, singletons, and powersets
	3. The expressibility assumption
	4. S->V and EA in intuitionistic metamathematics
	5. EA and the theorems of propositional logic
	6. More on S->V and EA in intuitionistic metamathematics
	7. Completeness and logical truth: Questions from Dana Scott
	8. EA and the Brouwer–Kripke scheme
	References

