WEAK*-CLOSURE OF CERTAIN SUBSPACES OF THE DUAL OF SOME ABELIAN BANACH ALGEBRAS

MARÍA J. ALEANDRO AND CARLOS C. PEÑA

ABSTRACT. We shall determine the weak*-closure of some subspaces of the dual of certain Banach algebras. In particular, we consider this problematic in the context of abelian C^* -algebras.

1. Introduction

Let I be a closed ideal of an abelian Banach algebra $\mathscr A$ with bounded approximate identity. The determination of conditions under which I itself is provided with a bounded approximate identity is a matter of interest. Recently, it was shown how certain idempotents of the second dual space $\mathscr A^{**}$ of $\mathscr A$ are related with this problem. In particular, $\mathscr A^{**}$ is considered with the Banach algebra structure given by any one of the two canonical Arens products, in such a way that $\mathscr A$ becomes a Banach subalgebra of $\mathscr A^{**}$ by means of the natural isometric immersion $\chi_{\mathscr A}: \mathscr A \hookrightarrow \mathscr A^{**}$ [1]. In this framework, I has a bounded approximate identity if and only if there is an idempotent $a^{**} \in \mathscr A^{**}$ so that the space $a^{**}\mathscr A^{*}$ is weak*-closed in $\mathscr A^{*}$ and $I = \{a \in \mathscr A: aa^{**} = 0\}$ (cf. [8, Lemma 2.3]). Consequently, the characterization of elements $a^{**} \in \mathscr A^{**}$ so that $a^{**}\mathscr A^{*}$ is weak*-closed is an issue that deserves consideration and probably is interesting on its own.

2. About the Weak*-Closedness of $a^{**} \mathscr{A}^*$

Theorem 1. Given $a^{**} \in \mathscr{A}^{**}$ let $\rho_{a^{**}} : \mathscr{A} \to \mathscr{A}^{**}$ be the map $\rho_{a^{**}}(a) = aa^{**}$ if $a \in \mathscr{A}$.

(1) The following equalities hold:

$$(a^{**}\mathscr{A}^*)^{-w^*} = \bigcap \{ \ker \chi_{\mathscr{A}}(a) : a \in {}^{\perp}(a^{**}\mathscr{A}^*) \}$$

= $\bigcap \{ \ker \chi_{\mathscr{A}}(a) : aa^{**} = 0_{\mathscr{A}^{**}} \}$
= $(\ker(\rho_{a^{**}}))^{\perp}$.

- (2) Let \mathscr{A} be a weakly compact Banach algebra. Then $a^{**}\mathscr{A}^{*}$ is weak*-closed in \mathscr{A}^{*} if and only if $\mathfrak{R}[(\chi_{\mathscr{A}})^{-1} \circ \rho_{a^{**}}]$ is closed in \mathscr{A} .
- *Proof.* (1) As the weak*-topology is locally convex by the Hahn–Banach separation theorem is $(a^{**}\mathscr{A}^{**})^{-w^*} = \cap_{\gamma \in \Gamma} \ker(\gamma)$, where Γ denotes the set of weak*-continuous linear forms that annihilates on $a^{**}\mathscr{A}^{**}$ (cf. [6, Cor. 1.2.13]). Moreover, any weak*-continuous linear form γ is realized as an evaluation, i.e., $\gamma \in \mathfrak{I}(\chi_{\mathscr{A}})$ (cf. [6, Prop. 1.3.5]). The second and third equalities are immediate.
 - (2) Since \mathscr{A} is weakly compact $\chi_{\mathscr{A}}(\mathscr{A})$ becomes a two sided ideal of \mathscr{A}^{**} [11]. So $(\chi_{\mathscr{A}})^{-1} \circ \rho_{a^{**}} \in B(A)$ and $a^{**}x^* = ((\chi_{\mathscr{A}})^{-1} \circ \rho_{a^{**}})^*(x^*)$ for all $x^* \in \mathscr{A}^*$. Now the assertion follows by ([3, Ch. VI, Th. 1.10]).

²⁰¹⁰ Mathematics Subject Classification. Primary: 06B10; Secondary: 06D05.

Key words and phrases. Bounded approximate identities; Arens products; Weakly compact Banach algebras; Character space of abelian Banach algebras; Shilov boundary.

Corollary 1. *If* $a^{**} \in \mathscr{A}^{**}$, $a^{**} \mathscr{A}^{*}$ *is weak*-closed if and only if* $(\ker(\rho_{a^{**}}))^{\perp} \subseteq a^{**} \mathscr{A}^{*}$.

Example 1. Let $\mathscr{A}=c_0(S)$ be the usual Banach algebra of continuous functions vanishing at infinity on an infinite discrete set S. Then $\mathscr{A}^*\approx l^1(S)$ and $\mathscr{A}^{**}\approx l^\infty(S)$. Given $a^{**}\in\mathscr{A}^{**}$ let us write $\sigma(a^{**})=\{s\in S:a_s^{**}\neq 0\}$. For $s\in S$ let $\delta^s\in\mathscr{A}^*$ be the current delta function on S so that $\delta_s(s)=1$ and $\delta_s(t)=0$ if $t\in S-\{s\}$. By Theorem 1 and as $\{\delta^s\}_{s\in S}$ is a basis of \mathscr{A}^* it is easy to see that

$$(a^{**}\mathscr{A}^*)^{-w^*} = \operatorname{span}[\delta^s : s \in \sigma(a^{**})]^{-w^*} = \operatorname{span}[\delta^s : s \in \sigma(a^{**})]^{-}.$$

So $a^{**}\mathscr{A}^*$ is weak*-closed if and only if $\sum_{s\in\sigma(a^{**})}|a_s^*/a_s^{**}|<\infty$ whenever $\sum_{s\in\sigma(a^{**})}|a_s^*|<\infty$. This condition holds if $\sigma(a^{**})$ is finite. Otherwise, let $P_f(\sigma(a^{**}))$ be the class of finite subsets of $\sigma(a^{**})$ and if $F\in P_f(\sigma(a^{**}))$ let $T_F\in l^1(\sigma(a^{**}))^*$ so that $T_F(a^*)=\sum_{s\in F}a_s^*/a_s^{**}$. By the uniform boundedness principle the class $\{T_F\}_{F\in P_f(\sigma(a^{**}))}$ becomes bounded. But $\|T_F\|=\max\{|a_s^{**}|^{-1}\colon s\in F\}$ for each F. Consequently, $a^{**}\mathscr{A}^*$ is weak*-closed if and only if $\inf\sigma(a^{**})>0$.

3. When \mathscr{A} is an abelian C^* -algebra

Theorem 2. Let \mathscr{A} be an abelian non-reflexive C^* -algebra and let $a^{**} \in \mathscr{A}$.

- (1) If a^{**} is invertible or quasi-nilpotent then $a^{**} \mathcal{A}^*$ is weak*-closed.
- (2) Let $a^{**} \in \mathscr{A}^{**} \chi_{\mathscr{A}}(\mathscr{A})$ be idempotent.
 - (a) There exists a weak*-dense norm-closed subspace $\Sigma_{a^{**}}$ of $\ker(\rho_{a^{**}})^{\perp}$ so that $\mathscr{A}a^{**} \subseteq \chi_{\mathscr{A}}(\mathscr{A}) \oplus [\Sigma_{a^{**}}]^{\perp}$.
 - (b) Let $\{a_t\}_{t\in T}$ be a bounded net of $\mathscr A$ so that $a^{**}=w^*-\lim_{t\in T}\chi_{\mathscr A}(a_t)$. The set $\mathscr J=\{a\in\mathscr A:\exists x\in\mathscr A/a=w-\lim_{t\in T}(xa_t)\}$ is an ideal of $\mathscr A$. Further, given $a\in\mathscr A,\,\chi_{\mathscr A}(a)\in\mathscr Aa^{**}$ if and only if $a\in\mathscr J$.
 - (c) $a^{**} \mathscr{A}^*$ is weak*-closed if and only if $a^{**} \mathscr{A}^* = \mathscr{A}^*$.

Proof. Since \mathscr{A} is a complex abelian C^* -algebra it becomes Arens regular [10]. Indeed, the second conjugate algebra $(\mathscr{A}^{**}, \square)$ becomes a C^* -algebra that is abelian because \mathscr{A} is abelian and regular (cf. [2, Th. 7.1]). Besides \mathscr{A} has a bounded approximate identity and so $(\mathscr{A}^{**}, \square)$ is unital. If $\Delta(\mathscr{A}^{**})$ denotes the maximal ideal space of $(\mathscr{A}^{**}, \square)$ the Gelfand transform $G: (\mathscr{A}^{**}, \square) \to C(\Delta(\mathscr{A}^{**}))$ provides an isometric isomorphism of Banach algebras

(1) Given $a^{**} \in \mathscr{A}^{**}$ let $a \in \ker(\rho_{a^{**}})$. Then

$$0_{C(\Delta(\mathscr{A}^{**}))} = G(aa^{**}) = G(\chi_{\mathscr{A}}(a))G(a^{**}),$$

i.e., $\mathfrak{h}(\chi_{\mathscr{A}}(a))\mathfrak{h}(a^{**}) = 0$ for all $\mathfrak{h} \in \Delta(\mathscr{A}^{**})$.

If a^{**} is invertible it is clear that $\sigma_{\mathscr{A}^{**}}(\chi_{\mathscr{A}}(a)) = \{0\}$ and $\sigma_{\mathscr{A}}(a) = \{0\}$ because $\chi_{\mathscr{A}}$ is isometric. So it is readily seen that $a = 0_{\mathscr{A}}$ and $(\ker(\rho_{a^{**}}))^{\perp} = \mathscr{A}^{*}$.

If a^{**} is quasi-nilpotent $\ker(\rho_{a^{**}}) = \mathscr{A}$ and $(\ker(\rho_{a^{**}}))^{\perp} = \{0_{\mathscr{A}^*}\}.$

In both cases it is plain that $a^{**} \mathscr{A}^*$ becomes weak*-closed if $a^{**} \in \mathscr{A}^{**}$ is invertible or quasi-nilpotent and the claim follows.

(2) Let us write $I(a^{**}) = G(a^{**})^{-1}[\sigma_{\mathscr{A}^{**}}(a^{**}) - \{0\}]$. We have $\ker(\rho_{a^{**}}) = \bigcap \{\ker(\mathfrak{h} \circ \chi_{\mathscr{A}}) : \mathfrak{h} \in I(a^{**})\}.$

Therefore

$$(\ker(\rho_{a^{**}}))^{\perp} = \operatorname{span}[\cup_{\mathfrak{h}\in I(a^{**})} \ker(\mathfrak{h}\circ\chi_{\mathscr{A}})^{\perp}]^{-w^{*}} = [\Sigma_{a^{**}}]^{-w^{*}},$$
 (1)

with $\Sigma_{a^{**}} = \operatorname{span}[S_{a^{**}}]^-$ and $S_{a^{**}} = \{\mathfrak{h} \circ \chi_{\mathscr{A}} : \mathfrak{h} \in I(a^{**})\}$. If $\mathfrak{h} \in \Delta(\mathscr{A}^{**})$ it is straightforward to see that $a^{**}(\mathfrak{h} \circ \chi_{\mathscr{A}}) = \langle \mathfrak{h} \circ \chi_{\mathscr{A}}, a^{**} \rangle \mathfrak{h} \circ \chi_{\mathscr{A}}$. Further, let $\mathfrak{h} \in I(a^{**})$ so that $\langle \mathfrak{h} \circ \chi_{\mathscr{A}}, a^{**} \rangle \neq 0$. If $a^{**}\mathscr{A}^*$ is weak*-closed we can write $\mathfrak{h} \circ \chi_{\mathscr{A}} = a^{**}\chi_{\mathfrak{h}}^*$ for some $\chi_{\mathfrak{h}}^* \in \mathscr{A}^*$.

(a) If a^{**} is idempotent we have

$$a^{**}x_{\mathfrak{h}}^{*}=a^{**}(\mathfrak{h}\circ\chi_{\mathscr{A}})=\langle\mathfrak{h}\circ\chi_{\mathscr{A}},a^{**}\rangle\mathfrak{h}\circ\chi_{\mathscr{A}}=\mathfrak{h}\circ\chi_{\mathscr{A}}.$$

Then $\langle \mathfrak{h} \circ \chi_{\mathscr{A}}, a^{**} \rangle = 1$ and $a^{**}(\mathfrak{h} \circ \chi_{\mathscr{A}}) = \mathfrak{h} \circ \chi_{\mathscr{A}}$. Thus, if $a \in \mathscr{A}$ and $a^* \in \Sigma_{a^{**}}$ we see that

$$\langle a^*, \chi_{\mathscr{A}}(a) \rangle = \langle a, a^* \rangle = \langle a, a^{**}a^* \rangle = \langle a^*a, a^{**} \rangle = \langle a^*, \rho_{a^{**}}(a) \rangle,$$

i.e., $\rho_{a^{**}}(a) - \chi_{\mathscr{A}}(a) \in [\Sigma_{a^{**}}]^{\perp}$. If $\chi_{\mathscr{A}}(a) \in [\Sigma_{a^{**}}]^{\perp}$ let us consider a nonzero homomorphism $\varphi_0 : \mathscr{A} \to \mathbb{C}$. It admits a natural extension, on the C^* -subalgebra \mathscr{Q} of \mathscr{A}^{**} generated by $\chi_{\mathscr{A}}(\mathscr{A}) \cup \{a^{**}\}$, to an homomorphism φ_1 such that $\varphi_1(a^{**}) = 1$. Since \mathscr{Q} is a commutative symmetric Banach *-algebra its Shilov boundary $\partial \mathscr{Q}$ coincides with the whole maximal ideal space $\Delta(\mathscr{Q})$ (cf. [7, Example 3.3.16]). Thus φ_1 has an extension to a character $\varphi_2 \in \mathscr{A}^{**}$ (cf. [4, Cor. 1]). Hence $\varphi_2 \in I(a^{**})$, $\varphi_2 \circ \chi_{\mathscr{A}} \in \Sigma_{a^{**}}$ and

$$egin{aligned} 0 &= \langle \pmb{arphi}_2 \circ \pmb{\chi}_\mathscr{A}, \pmb{\chi}_\mathscr{A}(a)
angle \ &= \langle a, \pmb{arphi}_2 \circ \pmb{\chi}_\mathscr{A}
angle \ &= \langle \pmb{\chi}_\mathscr{A}(a), \pmb{arphi}_2
angle \ &= \langle \pmb{\chi}_\mathscr{A}(a), \pmb{arphi}_1
angle \ &= \langle a, \pmb{arphi}_0
angle. \end{aligned}$$

Thus $a \in \mathscr{A}$ must be quasi-nilpotent and we can conclude that $a = 0_{\mathscr{A}}$, i.e., $\mathscr{A}a^{**} \subseteq \chi_{\mathscr{A}}(\mathscr{A}) \oplus [\Sigma_{a^{**}}]^{\perp}$.

(b) It is easy to see that \mathscr{J} is an ideal of \mathscr{A} , eventually trivial. Let $a \in \mathscr{A}$ so that $\chi_{\mathscr{A}}(a) = xa^{**}$ for some $x \in \mathscr{A}$. Given $a^* \in \mathscr{A}^*$ we have

$$\langle a, a^* \rangle = \langle a^* x, a^{**} \rangle = \lim_{t \in T} \langle a_t, a^* x \rangle = \langle x a_t, a^* \rangle,$$

i.e., $a \in \mathcal{J}$. Likewise, if $a \in \mathcal{J}$ and $a = w - \lim_{t \in T} (xa_t)$ for some $x \in \mathcal{A}$ then

$$\langle a^*, xa^{**} \rangle = \lim_{t \in T} \langle a_t, a^*x \rangle = \langle a, a^* \rangle$$

and so $\chi_{\mathscr{A}}(a) = xa^{**}$.

(c) Since $(\ker(\rho_{a^{**}}))^{\perp \perp} = [\chi_{\mathscr{A}}(\ker(\rho_{a^{**}}))]^{-w^{*}}$ by (1) we see that

$$\chi_{\mathscr{A}}(\ker(\rho_{a^{**}})) \subseteq [\Sigma_{a^{**}}]^{\perp}.$$

Consequently $\rho_{a^{**}}$ must be injective and the assertion follows by Corollary 1.

Example 2. Let $\mathscr{A} = C_0(G)$ be the uniform Banach algebra of complex functions vanishing at infinity on a locally compact abelian group G with Haar invariant measure λ and identity element e. There is an isometric isomorphism of Banach spaces between \mathscr{A}^* and the Banach space M(G) of complex bounded regular Borel measures (cf. [9, Th. 2.14]). Further, by the Lebesgue–Radon–Nikodym decomposition theorem,

$$\mathscr{A}^* \approx l^1(G) \oplus_1 L^1(G,\lambda) \oplus_1 M_{cs}(G,\lambda),$$

i.e., any element of M(G) can be represented uniquely as the sum of a discrete measure, an absolutely continuous and a singular continuous measure with respect to λ (cf. [9, Th. 6.10]). Consequently,

$$\mathscr{A}^{**} \approx l^{\infty}(G) \oplus_{\infty} L^{\infty}(G) \oplus_{\infty} M_{SC}(G, \lambda)^{*}.$$

Let $m, n \in l^{\infty}(G)$, $M, N \in L^{\infty}(G)$ and $\mu, \eta \in M_{sc}(G)^*$. It is straightforward to see that

$$(m,M,\mu)(n,N,\eta) = (mn,MN,\mu\square\eta),$$

where \square is the current Arens product of \mathscr{A}^{**} and mn and MN represent the pointwise products of $l^{\infty}(G)$ and $L^{\infty}(G)$. Let W be a compact neighbourhood of e and let $M = I_{W - \{e\}}$, where $I_{W - \{e\}}$ is the usual characteristic function of $W - \{e\}$. Then M can be viewed as an idempotent of \mathscr{A}^{**} and $M\mathscr{A}^{*}$ is not weak*-closed. For instance, let $\mathscr{N} = \{\lambda(U)^{-1}I_{U}\}_{U \in \mathscr{U}_{e}}$, where \mathscr{U}_{e} is the directed set of relatively compact symmetric neighbourhoods of e. The net \mathscr{N} is bounded in $L^{1}(G)$ and $\delta_{e} = w^{*} - \lim_{U \in \mathscr{U}_{e}} F[\lambda(U)^{-1}I_{U}]$, i.e., $\delta_{e} \in (M\mathscr{A}^{*})^{-w^{*}}$. Nevertheless, $M\mathscr{A}^{*} = Ml^{1}(G) \oplus_{1} ML^{1}(G, \lambda) \oplus_{1} (0_{M_{CS}(G, \lambda)^{*}})$ and

$$Ml^1(G) = \{ \zeta \in l^1(G) : \operatorname{supp}(\zeta) \subseteq W - \{e\} \}$$

and therefore $M\mathscr{A}^*$ is not weak*-closed.

REFERENCES

- [1] R. Arens: The adjoint of a bilinear operation. Proc. Amer. Math. Soc. 2 (1951), 839-848. MR 0045941.
- [2] P. Civin and B. Yood: *The second conjugate space of a Banach algebra as an algebra*. Pacific J. Math. **11** (1961), 847–870. MR 0143056.
- [3] J. B. Conway: *A course in functional analysis*. 2nd ed., Graduate Texts in Mathematics, vol. 96, Springer, 1990. MR 1070713.
- [4] G. Corach and A. Maestripieri: Extension of characters and generalized Shilov boundaries. Rev. Un. Mat. Argentina 32 (1986), 211–216.
- [5] N. Dunford and J. T. Schwartz: *Linear operators. Part I: General Theory.* Pure and Applied Mathematics, vol. 7. Interscience Publishers, 1958. MR 0117523.
- [6] R. V. Kadison and J. R. Ringrose: Fundamentals of the theory of operator algebras. Graduate Studies in Mathematics, vol. 15, American Mathematical Society, 1997. MR 1468229.
- [7] E. Kaniuth: A course in commutative Banach algebras. Graduate Texts in Mathematics, vol. 246. Springer, 2009. MR 2458901.
- [8] A. Lau and A. Ülger: Characterization of closed ideals with bounded approximate identities in commutative Banach algebras, complemented subspaces of the group Von Neumann algebras and applications. Trans. Amer. Math. Soc. **366** (2014), no. 8, 4151–4171. MR 3206455.
- [9] W. Rudin: Real and complex analysis. 3rd ed., McGraw-Hill, 1987. MR 0924157.
- [10] S. Sherman: *The second adjoint of a C*-algebra*. Proceedings of the International Congress of Mathematicians, Cambridge, Mass., 1950, vol. 1, p. 470. Amer. Math. Soc., Providence, R. I., 1952.
- [11] S. Watanabe: A Banach algebra which is in the second dual space. Sci. Rep. Niigata Univ. Ser. A, no. 11 (1974), 95–101. MR 0383079.
- (M. J. Aleandro) UNIVERSIDAD NACIONAL CENTRO DE LA PROVINCIA DE BUENOS AIRES, DEPARTMENTO DE MATEMÁTICAS NUCOMPA, TANDIL, ARGENTINA

 $\textit{E-mail}: \verb|majo.aleandro@gmail.com||$

(C. C. Peña) UNIVERSIDAD NACIONAL CENTRO DE LA PROVINCIA DE BUENOS AIRES, DEPARTMENTO DE MATEMÁTICAS - NUCOMPA, TANDIL, ARGENTINA

E-mail: ccpenia@gmail.com