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WEAK*-CLOSURE OF CERTAIN SUBSPACES OF THE DUAL
OF SOME ABELIAN BANACH ALGEBRAS

MARÍA J. ALEANDRO AND CARLOS C. PEÑA

ABSTRACT. We shall determine the weak*-closure of some subspaces of the dual of cer-
tain Banach algebras. In particular, we consider this problematic in the context of abelian
C∗-algebras.

1. INTRODUCTION

Let I be a closed ideal of an abelian Banach algebra A with bounded approximate iden-
tity. The determination of conditions under which I itself is provided with a bounded appro-
ximate identity is a matter of interest. Recently, it was shown how certain idempotents of the
second dual space A ∗∗ of A are related with this problem. In particular, A ∗∗ is considered
with the Banach algebra structure given by any one of the two canonical Arens products, in
such a way that A becomes a Banach subalgebra of A ∗∗ by means of the natural isometric
immersion χA : A ↪→ A ∗∗ [1]. In this framework, I has a bounded approximate identity
if and only if there is an idempotent a∗∗ ∈A ∗∗ so that the space a∗∗A ∗ is weak*-closed in
A ∗ and I = {a ∈A : aa∗∗ = 0} (cf. [8, Lemma 2.3]). Consequently, the characterization of
elements a∗∗ ∈A ∗∗ so that a∗∗A ∗ is weak*-closed is an issue that deserves consideration
and probably is interesting on its own.

2. ABOUT THE WEAK*-CLOSEDNESS OF a∗∗A ∗

Theorem 1. Given a∗∗ ∈A ∗∗ let ρa∗∗ : A →A ∗∗ be the map ρa∗∗(a) = aa∗∗ if a ∈A .
(1) The following equalities hold:

(a∗∗A ∗)−w∗ = ∩{ker χA (a) : a ∈ ⊥(a∗∗A ∗)}
= ∩{ker χA (a) : aa∗∗ = 0A ∗∗}

= (ker(ρa∗∗))
⊥.

(2) Let A be a weakly compact Banach algebra. Then a∗∗A ∗ is weak*-closed in A ∗

if and only if R[(χA )−1 ◦ρa∗∗ ] is closed in A .

Proof. (1) As the weak*-topology is locally convex by the Hahn–Banach separation
theorem is (a∗∗A ∗∗)−w∗ =∩γ∈Γ ker(γ), where Γ denotes the set of weak*-continuous
linear forms that annihilates on a∗∗A ∗∗ (cf. [6, Cor. 1.2.13]). Moreover, any weak*-
continuous linear form γ is realized as an evaluation, i.e., γ ∈ ℑ(χA ) (cf. [6, Prop.
1.3.5]). The second and third equalities are immediate.

(2) Since A is weakly compact χA (A ) becomes a two sided ideal of A ∗∗ [11]. So
(χA )−1 ◦ρa∗∗ ∈ B(A) and a∗∗x∗ = ((χA )−1 ◦ρa∗∗)

∗(x∗) for all x∗ ∈ A ∗. Now the
assertion follows by ([3, Ch. VI, Th. 1.10]).
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Corollary 1. If a∗∗ ∈A ∗∗, a∗∗A ∗ is weak*-closed if and only if (ker(ρa∗∗))
⊥ ⊆ a∗∗A ∗.

Example 1. Let A = c0(S) be the usual Banach algebra of continuous functions vanishing
at infinity on an infinite discrete set S. Then A ∗ ≈ l1(S) and A ∗∗ ≈ l∞(S). Given a∗∗ ∈A ∗∗

let us write σ(a∗∗) = {s ∈ S : a∗∗s 6= 0}. For s ∈ S let δ s ∈A ∗ be the current delta function
on S so that δs(s) = 1 and δs(t) = 0 if t ∈ S−{s}. By Theorem 1 and as {δ s}s∈S is a basis
of A ∗ it is easy to see that

(a∗∗A ∗)−w∗ = span[δ s : s ∈ σ(a∗∗)]−w∗ = span[δ s : s ∈ σ(a∗∗)]−.

So a∗∗A ∗ is weak*-closed if and only if ∑s∈σ(a∗∗) | a∗s/a∗∗s |< ∞ whenever ∑s∈σ(a∗∗) | a∗s |<
∞. This condition holds if σ(a∗∗) is finite. Otherwise, let Pf (σ(a∗∗)) be the class of finite
subsets of σ(a∗∗) and if F ∈ Pf (σ(a∗∗)) let TF ∈ l1(σ(a∗∗))∗ so that TF(a∗) = ∑s∈F a∗s/a∗∗s .
By the uniform boundedness principle the class {TF}F∈Pf (σ(a∗∗)) becomes bounded. But
‖ TF ‖= max{| a∗∗s |−1: s ∈ F} for each F . Consequently, a∗∗A ∗ is weak*-closed if and
only if infσ(a∗∗)> 0.

3. WHEN A IS AN ABELIAN C∗-ALGEBRA

Theorem 2. Let A be an abelian non-reflexive C∗-algebra and let a∗∗ ∈A .
(1) If a∗∗ is invertible or quasi-nilpotent then a∗∗A ∗ is weak*-closed.
(2) Let a∗∗ ∈A ∗∗−χA (A ) be idempotent.

(a) There exists a weak*-dense norm-closed subspace Σa∗∗ of ker(ρa∗∗)
⊥ so that

A a∗∗ ⊆ χA (A )⊕ [Σa∗∗ ]
⊥.

(b) Let {at}t∈T be a bounded net of A so that a∗∗ = w∗− limt∈T χA (at). The set
J = {a ∈A : ∃x ∈A /a = w− limt∈T (xat)} is an ideal of A . Further, given
a ∈A , χA (a) ∈A a∗∗ if and only if a ∈J .

(c) a∗∗A ∗ is weak*-closed if and only if a∗∗A ∗ = A ∗.

Proof. Since A is a complex abelian C∗-algebra it becomes Arens regular [10]. Indeed,
the second conjugate algebra (A ∗∗,2) becomes a C∗-algebra that is abelian because A is
abelian and regular (cf. [2, Th. 7.1]). Besides A has a bounded approximate identity and
so (A ∗∗,2) is unital. If ∆(A ∗∗) denotes the maximal ideal space of (A ∗∗,2) the Gelfand
transform G : (A ∗∗,2)→C(∆(A ∗∗)) provides an isometric isomorphism of Banach alge-
bras.

(1) Given a∗∗ ∈A ∗∗ let a ∈ ker(ρa∗∗). Then

0C(∆(A ∗∗)) = G(aa∗∗) = G(χA (a))G(a∗∗),

i.e., h(χA (a))h(a∗∗) = 0 for all h ∈ ∆(A ∗∗).
If a∗∗ is invertible it is clear that σA ∗∗(χA (a)) = {0} and σA (a) = {0} because

χA is isometric. So it is readily seen that a = 0A and (ker(ρa∗∗))
⊥ = A ∗.

If a∗∗ is quasi-nilpotent ker(ρa∗∗) = A and (ker(ρa∗∗))
⊥ = {0A ∗}.

In both cases it is plain that a∗∗A ∗ becomes weak*-closed if a∗∗ ∈A ∗∗ is invert-
ible or quasi-nilpotent and the claim follows.

(2) Let us write I(a∗∗) = G(a∗∗)−1[σA ∗∗(a∗∗)−{0}]. We have

ker(ρa∗∗) = ∩{ker(h◦χA ) : h ∈ I(a∗∗)}.
Therefore

(ker(ρa∗∗))
⊥ = span[∪h∈I(a∗∗) ker(h◦χA )⊥]−w∗ = [Σa∗∗ ]

−w∗ , (1)
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with Σa∗∗ = span[Sa∗∗ ]
− and Sa∗∗ = {h◦χA : h∈ I(a∗∗)}. If h∈∆(A ∗∗) it is straight-

forward to see that a∗∗(h◦χA ) = 〈h◦χA ,a∗∗〉h◦χA . Further, let h∈ I(a∗∗) so that
〈h◦ χA ,a∗∗〉 6= 0. If a∗∗A ∗ is weak*-closed we can write h◦ χA = a∗∗x∗h for some
x∗h ∈A ∗.
(a) If a∗∗ is idempotent we have

a∗∗x∗h = a∗∗(h◦χA ) = 〈h◦χA ,a∗∗〉h◦χA = h◦χA .

Then 〈h◦χA ,a∗∗〉= 1 and a∗∗(h◦χA ) = h◦χA . Thus, if a∈A and a∗ ∈ Σa∗∗

we see that

〈a∗,χA (a)〉= 〈a,a∗〉= 〈a,a∗∗a∗〉= 〈a∗a,a∗∗〉= 〈a∗,ρa∗∗(a)〉,

i.e., ρa∗∗(a)−χA (a)∈ [Σa∗∗ ]
⊥. If χA (a)∈ [Σa∗∗ ]

⊥ let us consider a nonzero ho-
momorphism ϕ0 : A →C. It admits a natural extension, on the C∗-subalgebra
Q of A ∗∗ generated by χA (A )∪{a∗∗}, to an homomorphism ϕ1 such that
ϕ1(a∗∗) = 1. Since Q is a commutative symmetric Banach *-algebra its Shilov
boundary ∂Q coincides with the whole maximal ideal space ∆(Q) (cf. [7, Ex-
ample 3.3.16]). Thus ϕ1 has an extension to a character ϕ2 ∈ A ∗∗ (cf. [4,
Cor. 1]). Hence ϕ2 ∈ I(a∗∗), ϕ2 ◦χA ∈ Σa∗∗ and

0 = 〈ϕ2 ◦χA ,χA (a)〉
= 〈a,ϕ2 ◦χA 〉
= 〈χA (a),ϕ2〉
= 〈χA (a),ϕ1〉
= 〈a,ϕ0〉.

Thus a ∈ A must be quasi-nilpotent and we can conclude that a = 0A , i.e.,
A a∗∗ ⊆ χA (A )⊕ [Σa∗∗ ]

⊥.
(b) It is easy to see that J is an ideal of A , eventually trivial. Let a ∈A so that

χA (a) = xa∗∗ for some x ∈A . Given a∗ ∈A ∗ we have

〈a,a∗〉= 〈a∗x,a∗∗〉= lim
t∈T
〈at ,a∗x〉= 〈xat ,a∗〉,

i.e., a ∈J . Likewise, if a ∈J and a = w− limt∈T (xat) for some x ∈A then

〈a∗,xa∗∗〉= lim
t∈T
〈at ,a∗x〉= 〈a,a∗〉

and so χA (a) = xa∗∗.
(c) Since (ker(ρa∗∗))

⊥⊥ = [χA (ker(ρa∗∗))]
−w∗ by (1) we see that

χA (ker(ρa∗∗))⊆ [Σa∗∗ ]
⊥.

Consequently ρa∗∗ must be injective and the assertion follows by Corollary 1.
�

Example 2. Let A = C0(G) be the uniform Banach algebra of complex functions vani-
shing at infinity on a locally compact abelian group G with Haar invariant measure λ and
identity element e. There is an isometric isomorphism of Banach spaces between A ∗ and
the Banach space M(G) of complex bounded regular Borel measures (cf. [9, Th. 2.14]).
Further, by the Lebesgue–Radon–Nikodym decomposition theorem,

A ∗ ≈ l1(G)⊕1 L1(G,λ )⊕1 Mcs(G,λ ),
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i.e., any element of M(G) can be represented uniquely as the sum of a discrete measure,
an absolutely continuous and a singular continuous measure with respect to λ (cf. [9,
Th. 6.10]). Consequently,

A ∗∗ ≈ l∞(G)⊕∞ L∞(G)⊕∞ Msc(G,λ )∗.

Let m,n ∈ l∞(G), M,N ∈ L∞(G) and µ,η ∈Msc(G)∗. It is straightforward to see that

(m,M,µ)(n,N,η) = (mn,MN,µ2η),

where 2 is the current Arens product of A ∗∗ and mn and MN represent the pointwise
products of l∞(G) and L∞(G). Let W be a compact neighbourhood of e and let M = IW−{e},
where IW−{e} is the usual characteristic function of W −{e}. Then M can be viewed as an
idempotent of A ∗∗ and MA ∗ is not weak*-closed. For instance, let N = {λ (U)−1IU}U∈Ue ,
where Ue is the directed set of relatively compact symmetric neighbourhoods of e. The
net N is bounded in L1(G) and δe = w∗− limU∈Ue F [λ (U)−1IU ], i.e., δe ∈ (MA ∗)−w∗ .
Nevertheless, MA ∗ = Ml1(G)⊕1 ML1(G,λ )⊕1 (0Mcs(G,λ )∗) and

Ml1(G) = {ζ ∈ l1(G) : supp(ζ )⊆W −{e}}
and therefore MA ∗ is not weak*-closed.
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