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CONSTRUCTION OF NELSON ALGEBRAS

LUIZ F. MONTEIRO AND IGNACIO D. VIGLIZZO

ABSTRACT. The Vakarelov construction of Nelson algebras up from Heyting ones is gen-
eralized to obtain De Morgan algebras from distributive lattices. Necessary and sufficient
conditions for these De Morgan algebras to be Nelson algebras are shown, and a character-
ization of the join-irreducible elements in the finite case is given.

1. INTRODUCTION

The calculus of constructive logic with strong negation was introduced by N. N. Vorobyeb
[24]] following ideas suggested by D. Nelson [14] and A. A. Markov [6]]. H. Rasiowa in-
troduced N-lattices ([[17]]) or Nelson algebras as an adequate semantics for this calculus.
D. Vakarelov [22] showed how a refinement of a construction due to Kalman allows a better
intuitive connection between the original ideas of Nelson and Markov and their algebraic
counterpart, associating pairs of elements in a Heyting algebra to propositions and their
refutation by a counter-example. This kind of refutation will represent the strong negation
of the proposition, while the weak negation will be represented by x — 0, as it happens in
the intuitionistic calculus. We believe that this connection is worthy of further exploration.
Some further applications of this construction may be found in [23]].

The results in this article were communicated in 1997 in the IV Congreso Antonio Mon-
teiro [13]], but have remained unpublished until now. Meanwhile, this article has been cited
in [19], and the idea of the construction has appeared also in [[15]], with the name of twist
structure.

Definition 1.1. A Heyting algebra (A. Monteiro [7]], see also R. Balbes and P. Dwinger [[11])
is an algebra (A, A, V,=,0,1) of type (2,2,2,0,0) that satisfies:

Hy) OAx=~0 H) x=x=~1

Hy)) (x=y)Ay=y H;) xA(x=y)=xAy

Hy) x=OA)~(x=2)A(x=y) Hs;) (xVy)=zx(x=2)A(=2)
Definition 1.2. A Nelson algebra is an algebra (A, 1,~,V,A\,—) of type (0,1,2,2,2) which
satisfies the identities:

N1) xVvixl N2) xA(xVy)=~x

N3) xA(yVz)=(zAx)V (yAx) N4) ~~xmx

N5) ~((xAy)=~xVr~y N6) xA~x=x(xA~x)A (Y ~y)
N7) x—x=1 N8) xA(x—=y)=xA(~xVy)
N9) (xAy)—zrx—(y—2) N10) (x—=y)A(~xVy)=~xVy

NIl x—= (yAz)=(x—=y)A(x—2)

This definition is equivalent to the one given by H. Rasiowa [17,[18]. A. and L. Monteiro
[[11]] proved that the axioms N1), N10) and N11) follow from N2)-N9), and that the latter
are independent. These results were obtained in 1973 (see [[11] and also D. Brignole and
A. Monteiro [3|[2]) and published only in 1995. From axioms N2) and N3) it follows that A
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64 LUIZ F. MONTEIRO AND IGNACIO D. VIGLIZZO

is a distributive lattice ([21]]). Furthermore, by N4)-N6), A is a Kleene algebra. A. Monteiro
[9,[10]] showed that in every Nelson algebra:

N12) (xVy) =z (x—=2)A(y = 2).

2. THE KALMAN CONSTRUCTION

The following construction of Nelson algebras was given by J. Kalman [5] for Kleene
algebras.
Given a bounded distributive lattice (L, A,V,0,1), and an element a € L, let

L(a)={(x,y) e HxH:xNy<a<xVy}.

It is clear that:

K1) (0,1),(1,0) € L(a).

J. Kalman defines the following operations on L(a):

K2) (x1,%2) U (y1,y2) = (X1 Vy1,%2 Ay2);

K3) (x1,%2) N (y1,2) = (x1 Ay1,%2 Vy2);

K4) ~ (Xl,XQ) = (xz,xl);
and shows that (L(a),N, U, (1,0)) is a Kleene algebra.

We derive the following generalization of this construction:

For a given ideal I and a filter F' of a bounded distributive lattice (L,A,V,0,1), we con-
sider the set:

M(L,I,F)={(a,b)e LxL:aNbelandaVbecF}.

It is clear that if (a,b) € M(L,I,F) then (b,a) € M(L,I,F). AsON1=0€land 0V 1=
1 € F, then (0,1),(1,0) e M(L,I,F).
M(L,1,F) is closed under the operations U and N defined by K2) and K3): Let (a;,az),
(b],bg) GM(L,I,F),then
(Daihay el Q2Q)aiVa, € F B)biANbyel @) by VbyeF.

As ay Nay Nby < ay ANay, by (1) we obtain (5) aj Aay Aby € I. Analogously, from (3)
we get (6) by Aby ANay € 1. Thus, by (5) and (6), (a1 V by) A (ax Aby) = (a1 Nay ANby)V
(b] /\ag/\bz) el

In a similar way, from (2) and (4), (a1 Vb))V (aa Aby) = (a1 Vaa Vb)) AN(ai Vb Vby) €F
yields. Therefore (a; V by,ay Aby) = (ay,a2) U (by,by) € M(L,I,F).

In a similar fashion we may prove that (a; Aby,axV by) = (ay,az) N (by,by) € M(L,1,F).

Next, we show that (M(L,I,F),N,U,(0,1),(1,0)) is a bounded distributive lattice, using
the axioms given by M. Sholander [21]].

NO) (a,b)N(0,1)=(an0,bV1)=(0,1).

N1) (a,b)U(1,0) = (aV1,bA0)=(1,0).

N2) (a,b)N((a,b)U(c,d)) = (a,b)N(aVe,bANd)=(aN(aVc),bV(bNd)) = (a,b).

N3) (a,6) N ((c,d)U (e, f)) = (( )N (a,b)) U ((c,d) N (a,b)) since (a,b) N ((c,d)U
E f))Z(aab)ﬂ(CV&dAf) (a

e, A(eV ),b\/(d/\f)) and on the other hand,
(e,f) N (a,b)) U ((¢,d) N (a,b)) = (e Na,f VD) U (c ANadV b) =
((e/\a)\/(c/\a),(f\/b)/\(d\/b)) (an(cVe),bV(dNf)).

Theorem 2.1. If we define the operation ~ on M(L,1,F) by K4) then (M(L,I,F),N,U,~)
is a De Morgan algebra.

Proof. Indeed:
N4) ~~ (a,b) =~ (b,a) = (a,b).
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CONSTRUCTION OF NELSON ALGEBRAS 65

N5) ~ ((a,b) N (¢c,d)) = ~ (aNec,bVd) = (bVd,aNc) = (ba)U(d,c) =

~ (a,b)U ~ (c,d). O

Remark 2.1. An element c of a De Morgan algebra is a center if c = ~ c. Then if c = (x,y) €

M(L,I,F) is a center: (x,y) =~ (x,y) = (y,x), so x =y and since x\y € I, x\VV'y € F, then

x €1, x € F and therefore x € INF. If now x € INF, then (x,x) € M(L,I,F) and it is a
center.

Remark 2.2. The order relation “<” induced on M(L,1,F) by the operation N is such that
(a1,a2) < (b1,by) iff a; < by and by < aj.

If we denote with L* the dual lattice of L, it is clear that M(L,I,F) C L x L*.
M. Fidel and D. Brignole define in [4] the following notion:

Definition 2.1. A P-De Morgan algebra is a non-empty subset M of L x L* such that:
P1) (0,1),(1,0) € M,
P2) If (xl,xz) € M then (xz,xl) eEM,
P3) If (x1,x2), (y1,¥2) € M, then (x; Ay1,x2V y2) €M,

in which the operations N,U and ~ are defined by K2)-K4).

If (x1,x2), (y1,y2) € M then by P2), (x2,x1),(y2,x2) € M and by P3), (x2 Ay2,x1 Vyi) €
M then, using again P2), we obtain (x; Vyi,x2 Ayz) € M.

From the remarks made above it follows that the construction of M (L, I, F) is a particular
case of P-De Morgan algebras. We indicate an example of a P-De Morgan algebra which
is not of the form M(L,I,F): if T = {0,a,1} is a chain (0 < a < 1) then T is a distributive
lattice. M = {(0,1),(a,a),(1,0)} is a P-De Morgan algebra, but there does not exist an
ideal I nor a filter F in T such that M(T,I,F) = M.

Lemma 2.1. M(L,I,F) is a Kleene algebra if and only if foralli € [ and f € F, i < f is
satisfied.
Proof. If M(L,I,F) is a Kleene algebra, then
N6) (a,b)N ~ (a,b) < (c,d)J ~ (c,d).
If i €I and f € F then all the elements (i,1),(0,f) € M(L,I,F), because iA1 =i € I,
iVli=1€eFandOAf=0€l,0V f=f¢cF. Then,
@)= 1N, =>G10N~ (1) <0,/ )U~(0,f)=(0,f)U(f,0) = (f,0),

and then i < f.
If now foralli eI, f € F,i < f is satisfied, then for (a,b), (c,d) € M(L,I,F), we have

(a,b)N ~ (a,b) = (a,b)N(b,a) = (aNb,aV D),
(c,d) U~ (c,d) = (c,d)N(d,c) = (cVd,cNd).

Asanbel,cvdeF,thenaAb<cVdandascAd €l,aVbeF,cNd <aVb. Therefore,
(a,b)N ~ (a,b) < (c,d)U ~ (c,d). O

Remark 2.3. If L is a finite distributive lattice, then every ideal I is generated by a single
element, [ = I(a) = {x € L: x < a} and the same happens for every filter F = F (b) = {y €
L:b <y}. Inthis case, the condition indicated in Lemma is satisfied if and only if a < b.
Furthermore, M(L,1,F) has a center, necessarily unique, if and only if a = b.

It is easy to see that:
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66 LUIZ F. MONTEIRO AND IGNACIO D. VIGLIZZO

Lemma 2.2. 1) If I, are ideals of L and I, C I, then M(L,I,,F) is a subalgebra of
M(L,b,F).
2) If Fy,F, are filters of L and F) C F, then M(L,1,F) is a subalgebra of M(L,1, F;).

Lemma 2.3. If B is a boolean algebra then M(B,{0},{1}) is a boolean algebra isomorphic
fo B.

Proof. (a,b) € M(B,{0},{1}) ifand only ifaAb=0andaVb=1,soa= —b.

Let h: B— M(B,{0},{1}) defined by h(a) = (a,—a). It is clear that & is well-defined
and is bijective. Furthermore, 2(1) = (1,0);2(0) = (0,1) and A(x Ay) = (x Ay, —(xAy)) =
(XA 3~V —3) = (,—2) (3, ) = h(x) Nh(3). A(—x) = (—,2) =~ (x,—2) =~ h{x) 50
h(xVy) = h(x)Uh(y) is also satisfied. O

Remark 2.4. The previous lemma suggests a natural injection of a De Morgan algebra A in
M(A,A,A) by means of the application b (b,~ b). However, it is easy to find cases where
it does not exist a filter nor an ideal such that the corresponding subalgebra of M(A,A,A)
isomorphic to A is of the form M(A,I,F).

Example 2.1. If I and F are, respectively, a prime ideal and a prime filter of a distributive
lattice L then the elements of M(L,1,F) are those in the set

[(FNI) X LIU[F xI|U[I x FJU[Lx (FNI)].

Indeed, if (a,b) € M(L,1,F) then aV/ b € F and as F is a prime filter, a € F orb € F. Ina
similar way, from a \b € I, we deduce thata €l orb € 1. If a € F, then we have a € I and
(a,b) e [(FNI)xL)orbeland (a,b) € FXI Ifb€ F and b €1, then (a,b) € Lx (FNI),
but ifa € I, then (a,b) € I X F. On the other hand, if (a,b) € (FNI) X LithenaANb<a €l
and aN b > a € F so (a,b) € M(L,1,F). Following similar reasonings one may check that
(FxI)U(Ix F)U(Lx (FNI)) C M(L,1,F).

If FNI = 0, then the elements in the set M(L,I,F) are simply those of (F x I)U (I x
F), and the union is disjoint. Actually there is an isomorphism between the ordered sets
M(L,I,F) and (F x I*)® (I x F*), where @® denotes the ordinal sum of ordered sets.

When F = F (D) is a principal filter and I = I(a) is a principal ideal, the ideal generated
in M(L,I,F) by the element (a,b) is isomorphic, as an ordered set, to the set I(a) x (F (b)),
which is dually isomorphic to F(b) x (I(a))*. There is also an isomorphism from F(b) X
(I(a))* to the filter generated by the element (b,a) in M(L,I,F).

The following construction of Nelson algebras was introduced in 1977 by D. Vakarelov
[22]] and allows us to construct Nelson algebras from Heyting ones. Given a Heyting algebra
(H,A\,V,=,0,1), let V(H) be the set:

V(H) ={(a,b) e HxH :aNb=0}.
In addition to the operations defined on V(H) = M(H,{0},H) by K2)-K4), Vakarelov de-
fines — by:

K5) (x1,%2) = (y1,52) = (x1 = y1,%1 Ay2),
and proves it is a binary operation on V (H).

Let p; be the projection over the first coordinate of pairs in M(L,I,F). As
p1 is a lattice homomorphism, L' = py(M(L,1,F)) is a sublattice of L containing I and

F, we may restrict our attention to constructions such that p;(M(L,I,F)) = L, because if
this were not the case, we could consider M (L', 1, F).

Lemma 2.4. Let H be a Heyting algebra and (a,b),(c,d) € M(H,I,F). Then
(a,b) = (¢,d) = (a=c,and) € M(H,I,F) if and only if (a = c)Va € F.
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CONSTRUCTION OF NELSON ALGEBRAS 67

Proof. The condition (a,b) — (¢,d) = (a = c,aNd) € M(H,I,F) is equivalent to say that
(i) (a=c)Nandeland (ii) (a=c)V(aNd)eF. AsaN(a=c)Nd=aNcNd <
cAd € 1, then (i) is always valid. The condition (ii) is equivalent to (a = ¢) Va € F and
(a=c)VdeF.Sincecvde Fandc<a=c,(a=c)VdeF. O

Lemma 2.5. Let H be a Heyting algebra with an ideal I and a filter F such that
p1(M(H,I,F)) = H. Then K5) defines a binary operation on M(H,I,F) if and only if
Ds(H)={y€eH:y=xV-x} CF.

Proof. Using Lemma we only have to prove that for every a,c € H, (a = c)Va € F
if and only if Ds(H) C F. If we assume that for every a,c € H, (a = ¢)Va € F, then in
particular —aVa = (a=-0)Va € F foreverya € H.
From0<cwegeta=0<a=cand (a=c)Va>aV-acF,soif Ds(H) C F then
(a=c)VacF. O

Remark 2.5. If T is the chain regarded above, then T can be algebrized as a Heyting
algebra. The Kleene algebra M(T,I(a),F (a)) has the following diagram:

Although py(M(T,I(a),F(a))) = T and therefore the operation — is well defined, one
may see that (1,a) — (1,a) = (1,a) # (1,0) so it is not a Nelson algebra. A. Monteiro
showed in 8] that it is not possible to endow this lattice with the structure of a Nelson
algebra.

Lemma 2.6. If H is a Heyting algebra then (M(H,{0},F),(1,0),~,N,U,—) is a Nelson
algebra.

Proof. We must prove that M(H,{0},F) is a Nelson subalgebra of V(H). Regarding
Lemmal2.4] it is sufficient to prove that for every (a,b), (c,d) € M(H,{0},F), (a=c)Va e
F. From 0 = aAb < ¢ by basic properties of Heyting algebras, b <a=cand aVvb <
aV(a=c)€F. O

Notice also that if (M(H,I,F),(1,0),~,N,U,—) is a Nelson algebra then I = {0}. In-
deed, if i € 1, then (i,1) € M(H,I,F) and by N7),
(

i1) = (i,1) = (i=i,inl) = (1,i) = (1,0),

soi=0.
Thus, we have proved the following theorem:

Theorem 2.2. Let H be a Heyting algebra. Then (M(H,I,F),N,U,—,~,(1,0)) is a Nelson
algebra if and only if I = {0}.

The previous theorem suggests the following:
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Definition 2.2. If H is a Heyting algebra, and F a filter in H, we denote by N(H,F) the
Nelson algebra (M(H,{0},F),N,U,—,~,(1,0)). Then V(H) = N(H,H).

Remark 2.6. If B is a boolean algebra, then V(B) is a three-valued Post algebra (see
A. Monteiro [12] p. 202]). More generally, N(B,F) is a three-valued Lukasiewicz algebra.

Lemma 2.7. Given a Heyting algebra H, p1(N(H,F)) = H if and only if Ds(H) C F.

Proof. 1f pi(N(H,F)) = H then for any x € H there exists x' € H such that (x,x") e N(H,F).
Therefore, —(x,x’) = (x,x') = (0,1) = (—x,x) e N(H,F),soxV—-x € F.

If Ds(H) C F then for any x € H,xV —x € F. As x A\ —x = 0, we can conclude that
(x,~x) € N(H,F) and x € p;(N(H,F)). O

We can only give a partial converse of Theorem 2.2}

Theorem 2.3. Let (H,N\,V,=,0,1) be an algebra of type (2,2,2,0,0). If
(N(H,F),(1,0),~,N,U,—) is a Nelson algebra, where the operations are defined by K2)-
K5) and p\(N(H,F)) = H, then H is a Heyting algebra.

Proof. Note in the first place that for every x € H, there is an element x’ € H such that (x,x)
and (x',x) belong to N(H, F).
H())Z 0Ax=0.
By N1), using the commutativity of the distributive lattice N(H, F), (1,0) = (¥, x)U
(1,0) = (1,0)U (¥',x) = (¥’ V1,0 Ax). Then, 0 Ax = 0.
Furthermore, as N(H,F) is a distributive lattice with first element, ~ (1,0) = (0,1), we
have (y,y)U(0,1) = (yVO0,y A1) = (y,)’), from where (1) yV 0 =y. In a similar way it is
proved that (2) xAO=0and (3) 0Vy=y.
H)): x=x=1.
By N7), (1,0) = (x,x) = (x,x') = (x = x,x AX'). Hence x = x = 1.
Hy): (x=y)Ay=y.
From N10), it is easy to see that for every a,b in a Nelson algebra A we have
b<~aVb<a— b. Therefore,

(X)) = NN Y) = 0y).

Then we have ((x = y) Ay, (xAY)VY) = (y,)) so (x=y)Ay=y.
H3): xA\(x=y) =xAy.
From N8S),

()N ((627) = (1)) = @) N (~ (@) U (ny).

We get: (xA(x=y),xX'V(xAY))=xA(yVx),xXV(xAy))andasxA(yVx') =

(xAy)V (xAx') = (xAy) V0O =xAy (the necessary identities for this are easily

derived from the fact that N(H, F) is a distributive lattice), x A (x = y) = xAy.
Hy): x= (yANz)=(x=>2)A(x=y).

From N11),

(6, x") = (1Y) N (2,7)) = ((0,2) = 3)) N ((x,x) = (2,2))
So, we obtain
(x= A2, XA V) =(x=2)A(x=Y), xAT)V(xAY)).

Thus, x = (yAz) = (x=2) A (x=y).
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CONSTRUCTION OF NELSON ALGEBRAS 69

Hs): (xVy)=z=(x=2)A(y=2).
As N(H,F) is a Nelson algebra, by N12):

() U() = (2.7) = ((64) = (2.2) N (1Y) = (2,2).
Using again the aforementioned results we get:
(V) =z, (xVy)AL) = ((x =) Ay =2),(xAZ) V(Y AD)).
Then, (xVy)=z=(x=2)A(y=2). O

Lemma 2.8. Let H be a Heyting algebra and S a subalgebra of the Nelson algebra V (H)
such that py(S) = H. Then there is a filter F in H such that S = N(H,F) ([23])).

Proof. Let F = {x € H :x=aV b for some pair (a,b) € S}. We claim that F is a filter.

As1=0V1and (0,1)€S,1€F.

If x <y and x € F, then there is a pair (a,b) € S such that aVb=x. Asy € H =
p1(S), there is also an element y’ € H such that (y,y") € S. We have then (a,b) U (y,y’) =
(avy,bAy)eSandaVyV (bAY)=(aVbVy)A(aVyVy)=(xVy) A(aVyVy)=
yA(V(aVvy)) =y, soy€eF.

If x,y € F, then there are pairs (a,b), (c,d) € S such thata\Vb =x and ¢ Vd =y. We cal-
culate now ((a,b)U(b,a))N((c,d)U(d,c)) = (aVb,anb)N(cVd,cAd)=(x,0)N(y,0) =
(xAy,0) € Sand since xAy = (x Ay) VO, xA\y € F.

We prove now that N(H,F) = S. It is clear that S C N(H,F). If (a,b) € N(H,F), then
aNb =0 and aVb € F, and therefore there exists (c,d) € S such that ¢V d =
aVb. Then (c,d)U(d,c) = (cVvd,d Nc) = (aVb,0) €S. Since p;(S) = H, there is some
b’ € H such that (b,b’) € S and therefore (b,b’) — (0,1) = (=b,b) € S. So we can write
(aVb,0)N(=b,b) = ((aVb) N—=b,0Vb) = (a,b) € S, because froma Ab =0, a < —b and
then (aVb)A—b= (aN-b)V (bA-D)=aV0=a. O

3. JOIN-IRREDUCIBLE ELEMENTS IN V (H)

A. Sendlewski determined in [20] the Priestley topological space corresponding to
N(H,F) for any Heyting algebra H and F one of its filters containing Ds(H), which is
the intersection of all the maximal filters of H.

Definition 3.1. An element p of a lattice L with first element O is join-irreducible if p # 0
and if p =aV b implies p = a or p = b. We shall denote with (L) the set of join-irreducible
elements of L.

Definition 3.2. If x is an element of a Heyting algebra H, the pseudocomplement of x or
intuitionistic negation of x, is the element —x = x = 0. It is easy to prove that x A —x = 0,
for every x € H.

Theorem 3.1. Given a finite nontrivial Heyting algebra H, the join-irreducible elements of
V(H) are the elements of the form (x,—x) withx € w(H) or (0,y) withy € T(H").

Proof. Let p=(q1,92) € ©(V(H)). Then,
p#(0,1), ()

soq; #0orgy # 1.

If g1 # 0, let us see that ¢; € w(H) and g2 = —q;.

If a;,b; € H and g = a; V by, then, as (ql,qz) € V(H), O=qAq = (a1 Vb])/\qz =
(a1 Nq2) V (b1 A q2), thus a; A gz =0, by A gz = 0 and therefore (ay,q2),(b1,q2) € V(H).
Then, from (g1,92) = (a1 V b1,q2) = (a1,q2) U (b1,92), as (q1,92) € n(V(H)), we have
qi1 = ap or gqi :bl.
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From g1 A gz = 0 follows g2 < —q;. Then, (q1,92) = (q1 V0,7q1 Aq2) = (q1,7q1) U
Eoqu), ;’VhiCh yields (q1,92) = (q1,7q1) or (q1,92) = (0,42), but as g # 0,(q1,92) =
q1,791)-

If g; = 0, then, by (%), g» # 1. Let us prove that g, € w(H*). If g» = a, A by, then
(O,qg) = (O,az /\bz) = (O,az) U (O,bz) and as (ql,qz) = (O,qg) € E(V(H)), this yields
g2 =az or g = b;.

Conversely, if p = (q1,—q1) with ¢; € ©(H), then:

(1) g1 A—q1 =0,s0 pe V(H).
(2) ¢q1 # 0, and therefore p # (0,1).
Q) If p= (al,az) @] (bl,bg), with (al,az), (bl,bz) S V(H) then g; = a; V by, which
yields g1 = aj or g; = by.
Ifgr=ai,qi Nap =a; Na, =0, so a; < —¢gy. As, on the other hand, —¢q; =
ay Nby < ap, we have a, = —q;.
Similarly, if ¢; = by, then b, = —q, from where we conclude that p = (a;,a)
or p—= (bl,bz).
If p=(0,q2), with g, € T(H*), then g, # 1 and therefore p # (0,1). If now p = (a;,a;)U
(b1,b7), then a; V by =0, so a; = a; = 0 and g, = ay A by, therefore, g» = ap or g = ba,
this is, p = (ay,az) or p = (by,by). O

Remark 3.1. In the previous proof we only used the fact that H is a distributive pseudocom-
plemented lattice with first and last element, this is, a bounded distributive lattice in which
for each element x there exists the greatest of the elements z such that, z \x = 0. Therefore,
the theorem is valid for M(L,{0},L) with L in those conditions.

Remark 3.2. Let us denote with Fy(u) the special filter of the first kind (H. Rasiowa [18],
p. 90]) generated by an element u in a Nelson algebra. A. Monteiro proved that F\(u) =
F(~ —u), where —x =x — 0. If we now consider the Nelson algebras of the form V (H), we
have that

F((x,y) = F(~ ~(x,3)) = F(~ ((v.y) = (0,1)) = F(~ (x = 0,xA 1))
— F(~ (-,.2)) = F((x,~)).

Fy(a)={x€A: ~x—~a=1} is the special filter of the second kind generated by the
element a. Let us see that F>((x,y)) = F((0,y)):

If (u,v) € F>((x,y)) then ~ (u,v) =~ (x,y) = (1,0), which is equivalent to
(v,u) = (v,x) = (1,0), this is, (v = y,vAx) = (1,0). We have then that v =y =1 from
where v <y and as 0 < u, then (0,y) < (u,v).

If now (0,y) < (u,v),v <y. As (x,y) € V(H),x Ny = 0, which implies that y < —x and
therefore v <y =y A\ —x, from where it results that v <y and v < —x, and then
~ (u,v) =~ (x,y) = mu) = (y,x) = (v=y,vAx) = (1,0), so (u,v) € F2((x,y)).
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