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CONSTRUCTION OF NELSON ALGEBRAS

LUIZ F. MONTEIRO AND IGNACIO D. VIGLIZZO

ABSTRACT. The Vakarelov construction of Nelson algebras up from Heyting ones is gen-
eralized to obtain De Morgan algebras from distributive lattices. Necessary and sufficient
conditions for these De Morgan algebras to be Nelson algebras are shown, and a character-
ization of the join-irreducible elements in the finite case is given.

1. INTRODUCTION

The calculus of constructive logic with strong negation was introduced by N. N. Vorobyeb
[24] following ideas suggested by D. Nelson [14] and A. A. Markov [6]. H. Rasiowa in-
troduced N-lattices ([17]) or Nelson algebras as an adequate semantics for this calculus.
D. Vakarelov [22] showed how a refinement of a construction due to Kalman allows a better
intuitive connection between the original ideas of Nelson and Markov and their algebraic
counterpart, associating pairs of elements in a Heyting algebra to propositions and their
refutation by a counter-example. This kind of refutation will represent the strong negation
of the proposition, while the weak negation will be represented by x→ 0, as it happens in
the intuitionistic calculus. We believe that this connection is worthy of further exploration.
Some further applications of this construction may be found in [23].

The results in this article were communicated in 1997 in the IV Congreso Antonio Mon-
teiro [13], but have remained unpublished until now. Meanwhile, this article has been cited
in [19], and the idea of the construction has appeared also in [15], with the name of twist
structure.

Definition 1.1. A Heyting algebra (A. Monteiro [7], see also R. Balbes and P. Dwinger [1])
is an algebra (A,∧,∨,⇒,0,1) of type (2,2,2,0,0) that satisfies:

H0) 0∧ x≈ 0 H1) x⇒ x≈ 1
H2) (x⇒ y)∧ y≈ y H3) x∧ (x⇒ y)≈ x∧ y
H4) x⇒ (y∧ z)≈ (x⇒ z)∧ (x⇒ y) H5) (x∨ y)⇒ z≈ (x⇒ z)∧ (y⇒ z)

Definition 1.2. A Nelson algebra is an algebra (A,1,∼,∨,∧,→) of type (0,1,2,2,2) which
satisfies the identities:

N1) x∨1≈ 1 N2) x∧ (x∨ y)≈ x
N3) x∧ (y∨ z)≈ (z∧ x)∨ (y∧ x) N4) ∼∼ x≈ x
N5) ∼ (x∧ y)≈∼ x∨ ∼ y N6) x∧ ∼ x≈ (x∧ ∼ x)∧ (y∨ ∼ y)
N7) x→ x≈ 1 N8) x∧ (x→ y)≈ x∧ (∼ x∨ y)
N9) (x∧ y)→ z≈ x→ (y→ z) N10) (x→ y)∧ (∼ x∨ y)≈∼ x∨ y
N11) x→ (y∧ z)≈ (x→ y)∧ (x→ z)

This definition is equivalent to the one given by H. Rasiowa [17, 18]. A. and L. Monteiro
[11] proved that the axioms N1), N10) and N11) follow from N2)-N9), and that the latter
are independent. These results were obtained in 1973 (see [11] and also D. Brignole and
A. Monteiro [3, 2]) and published only in 1995. From axioms N2) and N3) it follows that A
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is a distributive lattice ([21]). Furthermore, by N4)-N6), A is a Kleene algebra. A. Monteiro
[9, 10] showed that in every Nelson algebra:

N12) (x∨ y)→ z≈ (x→ z)∧ (y→ z).

2. THE KALMAN CONSTRUCTION

The following construction of Nelson algebras was given by J. Kalman [5] for Kleene
algebras.

Given a bounded distributive lattice (L,∧,∨,0,1), and an element a ∈ L, let

L(a) = {(x,y) ∈ H×H : x∧ y≤ a≤ x∨ y}.

It is clear that:
K1) (0,1),(1,0) ∈ L(a).

J. Kalman defines the following operations on L(a):
K2) (x1,x2)∪ (y1,y2) = (x1∨ y1,x2∧ y2);
K3) (x1,x2)∩ (y1,y2) = (x1∧ y1,x2∨ y2);
K4) ∼ (x1,x2) = (x2,x1);

and shows that (L(a),∩,∪,(1,0)) is a Kleene algebra.
We derive the following generalization of this construction:
For a given ideal I and a filter F of a bounded distributive lattice (L,∧,∨,0,1), we con-

sider the set:
M(L, I,F) = {(a,b) ∈ L×L : a∧b ∈ I and a∨b ∈ F}.

It is clear that if (a,b) ∈M(L, I,F) then (b,a) ∈M(L, I,F). As 0∧ 1 = 0 ∈ I and 0∨ 1 =
1 ∈ F , then (0,1),(1,0) ∈M(L, I,F).

M(L, I,F) is closed under the operations ∪ and ∩ defined by K2) and K3): Let (a1,a2),
(b1,b2) ∈M(L, I,F), then

(1) a1∧a2 ∈ I (2) a1∨a2 ∈ F (3) b1∧b2 ∈ I (4) b1∨b2 ∈ F .
As a1 ∧ a2 ∧ b2 ≤ a1 ∧ a2, by (1) we obtain (5) a1 ∧ a2 ∧ b2 ∈ I. Analogously, from (3)
we get (6) b1 ∧ b2 ∧ a2 ∈ I. Thus, by (5) and (6), (a1 ∨ b1)∧ (a2 ∧ b2) = (a1 ∧ a2 ∧ b2)∨
(b1∧a2∧b2) ∈ I.

In a similar way, from (2) and (4), (a1∨b1)∨(a2∧b2)= (a1∨a2∨b1)∧(a1∨b1∨b2)∈F
yields. Therefore (a1∨b1,a2∧b2) = (a1,a2)∪ (b1,b2) ∈M(L, I,F).

In a similar fashion we may prove that (a1∧b1,a2∨b2) = (a1,a2)∩(b1,b2)∈M(L, I,F).
Next, we show that (M(L, I,F),∩,∪,(0,1),(1,0)) is a bounded distributive lattice, using

the axioms given by M. Sholander [21].
N0) (a,b)∩ (0,1) = (a∧0,b∨1) = (0,1).
N1) (a,b)∪ (1,0) = (a∨1,b∧0) = (1,0).
N2) (a,b)∩ ((a,b)∪ (c,d)) = (a,b)∩ (a∨ c,b∧d) = (a∧ (a∨ c),b∨ (b∧d)) = (a,b).
N3) (a,b)∩ ((c,d)∪ (e, f )) = ((e, f )∩ (a,b))∪ ((c,d)∩ (a,b)) since (a,b)∩ ((c,d)∪

(e, f )) = (a,b)∩ (c∨ e,d ∧ f ) = (a∧ (c∨ e),b∨ (d ∧ f )), and on the other hand,
((e, f ) ∩ (a,b)) ∪ ((c,d) ∩ (a,b)) = (e ∧ a, f ∨ b) ∪ (c ∧ a,d ∨ b) =
((e∧a)∨ (c∧a),( f ∨b)∧ (d∨b)) = (a∧ (c∨ e),b∨ (d∧ f )).

Theorem 2.1. If we define the operation ∼ on M(L, I,F) by K4) then (M(L, I,F),∩,∪,∼)
is a De Morgan algebra.

Proof. Indeed:
N4) ∼∼ (a,b) =∼ (b,a) = (a,b).
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N5) ∼ ((a,b) ∩ (c,d)) = ∼ (a ∧ c,b ∨ d) = (b ∨ d,a ∧ c) = (b,a) ∪ (d,c) =
∼ (a,b)∪ ∼ (c,d). �

Remark 2.1. An element c of a De Morgan algebra is a center if c=∼ c. Then if c=(x,y)∈
M(L, I,F) is a center: (x,y) =∼ (x,y) = (y,x), so x = y and since x∧ y ∈ I, x∨ y ∈ F, then
x ∈ I, x ∈ F and therefore x ∈ I ∩F. If now x ∈ I ∩F, then (x,x) ∈ M(L, I,F) and it is a
center.

Remark 2.2. The order relation “≤” induced on M(L, I,F) by the operation ∩ is such that

(a1,a2)≤ (b1,b2) iff a1 ≤ b1 and b2 ≤ a2.

If we denote with L∗ the dual lattice of L, it is clear that M(L, I,F)⊆ L×L∗.
M. Fidel and D. Brignole define in [4] the following notion:

Definition 2.1. A P-De Morgan algebra is a non-empty subset M of L×L∗ such that:
P1) (0,1),(1,0) ∈M,
P2) If (x1,x2) ∈M then (x2,x1) ∈M,
P3) If (x1,x2),(y1,y2) ∈M, then (x1∧ y1,x2∨ y2) ∈M,

in which the operations ∩,∪ and ∼ are defined by K2)-K4).

If (x1,x2),(y1,y2) ∈M then by P2),(x2,x1),(y2,x2) ∈M and by P3), (x2∧ y2,x1∨ y1) ∈
M; then, using again P2), we obtain (x1∨ y1,x2∧ y2) ∈M.

From the remarks made above it follows that the construction of M(L, I,F) is a particular
case of P-De Morgan algebras. We indicate an example of a P-De Morgan algebra which
is not of the form M(L, I,F): if T = {0,a,1} is a chain (0 < a < 1) then T is a distributive
lattice. M = {(0,1),(a,a),(1,0)} is a P-De Morgan algebra, but there does not exist an
ideal I nor a filter F in T such that M(T, I,F) = M.

Lemma 2.1. M(L, I,F) is a Kleene algebra if and only if for all i ∈ I and f ∈ F, i ≤ f is
satisfied.

Proof. If M(L, I,F) is a Kleene algebra, then
N6) (a,b)∩ ∼ (a,b)≤ (c,d)∪ ∼ (c,d).

If i ∈ I and f ∈ F then all the elements (i,1),(0, f ) ∈ M(L, I,F), because i∧ 1 = i ∈ I,
i∨1 = 1 ∈ F and 0∧ f = 0 ∈ I, 0∨ f = f ∈ F . Then,

(i,1) = (i,1)∩ (1, i) = (i,1)∩ ∼ (i,1)≤ (0, f )∪ ∼ (0, f ) = (0, f )∪ ( f ,0) = ( f ,0),

and then i≤ f .
If now for all i ∈ I, f ∈ F , i≤ f is satisfied, then for (a,b),(c,d) ∈M(L, I,F), we have

(a,b)∩ ∼ (a,b) = (a,b)∩ (b,a) = (a∧b,a∨b),

(c,d)∪ ∼ (c,d) = (c,d)∩ (d,c) = (c∨d,c∧d).

As a∧b∈ I,c∨d ∈ F , then a∧b≤ c∨d and as c∧d ∈ I,a∨b∈ F , c∧d ≤ a∨b. Therefore,
(a,b)∩ ∼ (a,b)≤ (c,d)∪ ∼ (c,d). �

Remark 2.3. If L is a finite distributive lattice, then every ideal I is generated by a single
element, I = I(a) = {x ∈ L : x≤ a} and the same happens for every filter F = F(b) = {y ∈
L : b≤ y}. In this case, the condition indicated in Lemma 2.1 is satisfied if and only if a≤ b.
Furthermore, M(L, I,F) has a center, necessarily unique, if and only if a = b.

It is easy to see that:
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Lemma 2.2. 1) If I1, I2 are ideals of L and I1 ⊆ I2 then M(L, I1,F) is a subalgebra of
M(L, I2,F).

2) If F1,F2 are filters of L and F1 ⊆ F2 then M(L, I,F1) is a subalgebra of M(L, I,F2).

Lemma 2.3. If B is a boolean algebra then M(B,{0},{1}) is a boolean algebra isomorphic
to B.

Proof. (a,b) ∈M(B,{0},{1}) if and only if a∧b = 0 and a∨b = 1, so a =−b.
Let h : B→M(B,{0},{1}) defined by h(a) = (a,−a). It is clear that h is well-defined

and is bijective. Furthermore, h(1) = (1,0);h(0) = (0,1) and h(x∧ y) = (x∧ y,−(x∧ y)) =
(x∧y,−x∨−y) = (x,−x)∩ (y,−y) = h(x)∩h(y). h(−x) = (−x,x) =∼ (x,−x) =∼ h(x) so
h(x∨ y) = h(x)∪h(y) is also satisfied. �

Remark 2.4. The previous lemma suggests a natural injection of a De Morgan algebra A in
M(A,A,A) by means of the application b 7→ (b,∼ b). However, it is easy to find cases where
it does not exist a filter nor an ideal such that the corresponding subalgebra of M(A,A,A)
isomorphic to A is of the form M(A, I,F).

Example 2.1. If I and F are, respectively, a prime ideal and a prime filter of a distributive
lattice L then the elements of M(L, I,F) are those in the set

[(F ∩ I)×L]∪ [F× I]∪ [I×F ]∪ [L× (F ∩ I)].

Indeed, if (a,b) ∈M(L, I,F) then a∨b ∈ F and as F is a prime filter, a ∈ F or b ∈ F. In a
similar way, from a∧b ∈ I, we deduce that a ∈ I or b ∈ I. If a ∈ F, then we have a ∈ I and
(a,b)∈ [(F∩ I)×L] or b∈ I and (a,b)∈ F× I. If b∈ F and b∈ I, then (a,b)∈ L×(F∩ I),
but if a ∈ I, then (a,b) ∈ I×F. On the other hand, if (a,b) ∈ (F ∩ I)×L,then a∧b≤ a ∈ I
and a∨b≥ a ∈ F so (a,b) ∈M(L, I,F). Following similar reasonings one may check that
(F× I)∪ (I×F)∪ (L× (F ∩ I))⊆M(L, I,F).

If F ∩ I = /0, then the elements in the set M(L, I,F) are simply those of (F × I)∪ (I×
F), and the union is disjoint. Actually there is an isomorphism between the ordered sets
M(L, I,F) and (F× I∗)⊕ (I×F∗), where ⊕ denotes the ordinal sum of ordered sets.

When F = F(b) is a principal filter and I = I(a) is a principal ideal, the ideal generated
in M(L, I,F) by the element (a,b) is isomorphic, as an ordered set, to the set I(a)×(F(b))∗,
which is dually isomorphic to F(b)× (I(a))∗. There is also an isomorphism from F(b)×
(I(a))∗ to the filter generated by the element (b,a) in M(L, I,F).

The following construction of Nelson algebras was introduced in 1977 by D. Vakarelov
[22] and allows us to construct Nelson algebras from Heyting ones. Given a Heyting algebra
(H,∧,∨,⇒,0,1), let V (H) be the set:

V (H) = {(a,b) ∈ H×H : a∧b = 0}.
In addition to the operations defined on V (H) = M(H,{0},H) by K2)-K4), Vakarelov de-
fines→ by:

K5) (x1,x2)→ (y1,y2) = (x1⇒ y1,x1∧ y2),
and proves it is a binary operation on V (H).

Let p1 be the projection over the first coordinate of pairs in M(L, I,F). As
p1 is a lattice homomorphism, L′ = p1(M(L, I,F)) is a sublattice of L containing I and
F , we may restrict our attention to constructions such that p1(M(L, I,F)) = L, because if
this were not the case, we could consider M(L′, I,F).

Lemma 2.4. Let H be a Heyting algebra and (a,b),(c,d) ∈M(H, I,F). Then
(a,b)→ (c,d) = (a⇒ c,a∧d) ∈M(H, I,F) if and only if (a⇒ c)∨a ∈ F.
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Proof. The condition (a,b)→ (c,d) = (a⇒ c,a∧d) ∈M(H, I,F) is equivalent to say that
(i) (a⇒ c)∧ a∧ d ∈ I and (ii) (a⇒ c)∨ (a∧ d) ∈ F . As a∧ (a⇒ c)∧ d = a∧ c∧ d ≤
c∧ d ∈ I, then (i) is always valid. The condition (ii) is equivalent to (a⇒ c)∨ a ∈ F and
(a⇒ c)∨d ∈ F . Since c∨d ∈ F and c≤ a⇒ c, (a⇒ c)∨d ∈ F . �

Lemma 2.5. Let H be a Heyting algebra with an ideal I and a filter F such that
p1(M(H, I,F)) = H. Then K5) defines a binary operation on M(H, I,F) if and only if
Ds(H) = {y ∈ H : y = x∨¬x} ⊆ F.

Proof. Using Lemma 2.4 we only have to prove that for every a,c ∈ H, (a⇒ c)∨ a ∈ F
if and only if Ds(H) ⊆ F . If we assume that for every a,c ∈ H, (a⇒ c)∨ a ∈ F , then in
particular ¬a∨a = (a⇒ 0)∨a ∈ F for every a ∈ H.

From 0≤ c we get a⇒ 0≤ a⇒ c and (a⇒ c)∨a≥ a∨¬a ∈ F , so if Ds(H)⊆ F then
(a⇒ c)∨a ∈ F . �

Remark 2.5. If T is the chain regarded above, then T can be algebrized as a Heyting
algebra. The Kleene algebra M(T, I(a),F(a)) has the following diagram:

e
e e

e
e e

e

(0,1)

(0,a) (a,1)

(a,a)

(a,0) (1,a)

(1,0)

�
��

�
��

�
��

�
��

@
@@

@
@@

@
@@

@
@@

Although p1(M(T, I(a),F(a))) = T and therefore the operation → is well defined, one
may see that (1,a)→ (1,a) = (1,a) 6= (1,0) so it is not a Nelson algebra. A. Monteiro
showed in [8] that it is not possible to endow this lattice with the structure of a Nelson
algebra.

Lemma 2.6. If H is a Heyting algebra then (M(H,{0},F),(1,0),∼,∩,∪,→) is a Nelson
algebra.

Proof. We must prove that M(H,{0},F) is a Nelson subalgebra of V (H). Regarding
Lemma 2.4, it is sufficient to prove that for every (a,b),(c,d)∈M(H,{0},F), (a⇒ c)∨a∈
F . From 0 = a∧ b ≤ c by basic properties of Heyting algebras, b ≤ a⇒ c and a∨ b ≤
a∨ (a⇒ c) ∈ F . �

Notice also that if (M(H, I,F),(1,0),∼,∩,∪,→) is a Nelson algebra then I = {0}. In-
deed, if i ∈ I, then (i,1) ∈M(H, I,F) and by N7),

(i,1)→ (i,1) = (i⇒ i, i∧1) = (1, i) = (1,0),

so i = 0.
Thus, we have proved the following theorem:

Theorem 2.2. Let H be a Heyting algebra. Then (M(H, I,F),∩,∪,→,∼,(1,0)) is a Nelson
algebra if and only if I = {0}.

The previous theorem suggests the following:
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68 LUIZ F. MONTEIRO AND IGNACIO D. VIGLIZZO

Definition 2.2. If H is a Heyting algebra, and F a filter in H, we denote by N(H,F) the
Nelson algebra (M(H,{0},F),∩,∪,→,∼,(1,0)). Then V (H) = N(H,H).

Remark 2.6. If B is a boolean algebra, then V (B) is a three-valued Post algebra (see
A. Monteiro [12, p. 202]). More generally, N(B,F) is a three-valued Łukasiewicz algebra.

Lemma 2.7. Given a Heyting algebra H, p1(N(H,F)) = H if and only if Ds(H)⊆ F.

Proof. If p1(N(H,F))=H then for any x∈H there exists x′ ∈H such that (x,x′)∈N(H,F).
Therefore, ¬(x,x′) = (x,x′)→ (0,1) = (¬x,x) ∈ N(H,F), so x∨¬x ∈ F .

If Ds(H) ⊆ F then for any x ∈ H,x∨¬x ∈ F . As x∧¬x = 0, we can conclude that
(x,¬x) ∈ N(H,F) and x ∈ p1(N(H,F)). �

We can only give a partial converse of Theorem 2.2:

Theorem 2.3. Let (H,∧,∨,⇒,0,1) be an algebra of type (2,2,2,0,0). If
(N(H,F),(1,0),∼,∩,∪,→) is a Nelson algebra, where the operations are defined by K2)-
K5) and p1(N(H,F)) = H, then H is a Heyting algebra.

Proof. Note in the first place that for every x∈H, there is an element x′ ∈H such that (x,x′)
and (x′,x) belong to N(H,F).

H0): 0∧ x = 0.
By N1), using the commutativity of the distributive lattice N(H,F), (1,0)= (x′,x)∪
(1,0) = (1,0)∪ (x′,x) = (x′∨1,0∧ x). Then, 0∧ x = 0.

Furthermore, as N(H,F) is a distributive lattice with first element, ∼ (1,0) = (0,1), we
have (y,y′)∪ (0,1) = (y∨0,y′∧1) = (y,y′), from where (1) y∨0 = y. In a similar way it is
proved that (2) x∧0 = 0 and (3) 0∨ y = y.

H1): x⇒ x = 1.
By N7), (1,0) = (x,x′)→ (x,x′) = (x⇒ x,x∧ x′). Hence x⇒ x = 1.

H2): (x⇒ y)∧ y = y.
From N10), it is easy to see that for every a,b in a Nelson algebra A we have
b≤∼ a∨b≤ a→ b. Therefore,

((x,x′)→ (y,y′))∩ (y,y′) = (y,y′).

Then we have ((x⇒ y)∧ y,(x∧ y′)∨ y′) = (y,y′) so (x⇒ y)∧ y = y.
H3): x∧ (x⇒ y) = x∧ y.

From N8),

(x,x′)∩ ((x,x′)→ (y,y′)) = (x,x′)∩ (∼ (x,x′)∪ (y,y′)).

We get: (x∧ (x⇒ y),x′∨ (x∧ y′)) = (x∧ (y∨ x′),x′∨ (x∧ y′)) and as x∧ (y∨ x′) =
(x∧ y)∨ (x∧ x′) = (x∧ y)∨ 0 = x∧ y (the necessary identities for this are easily
derived from the fact that N(H,F) is a distributive lattice), x∧ (x⇒ y) = x∧ y.

H4): x⇒ (y∧ z) = (x⇒ z)∧ (x⇒ y).
From N11),

(x,x′)→ ((y,y′)∩ (z,z′)) = ((x,x′)→ (y,y′))∩ ((x,x′)→ (z,z′))

So, we obtain

(x⇒ (y∧ z),x∧ (y′∨ z′)) = ((x⇒ z)∧ (x⇒ y),(x∧ z′)∨ (x∧ y′)).

Thus, x⇒ (y∧ z) = (x⇒ z)∧ (x⇒ y).
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H5): (x∨ y)⇒ z = (x⇒ z)∧ (y⇒ z).
As N(H,F) is a Nelson algebra, by N12):

((x,x′)∪ (y,y′))→ (z,z′) = ((x,x′)→ (z,z′))∩ ((y,y′)→ (z,z′)).

Using again the aforementioned results we get:

((x∨ y)⇒ z,(x∨ y)∧ z′) = ((x⇒ z)∧ (y⇒ z),(x∧ z′)∨ (y∧ z′)).

Then, (x∨ y)⇒ z = (x⇒ z)∧ (y⇒ z). �

Lemma 2.8. Let H be a Heyting algebra and S a subalgebra of the Nelson algebra V (H)
such that p1(S) = H. Then there is a filter F in H such that S = N(H,F) ([23]).

Proof. Let F = {x ∈ H : x = a∨b for some pair (a,b) ∈ S}. We claim that F is a filter.
As 1 = 0∨1 and (0,1) ∈ S, 1 ∈ F .
If x ≤ y and x ∈ F , then there is a pair (a,b) ∈ S such that a∨ b = x. As y ∈ H =

p1(S), there is also an element y′ ∈ H such that (y,y′) ∈ S. We have then (a,b)∪ (y,y′) =
(a∨ y,b∧ y′) ∈ S and a∨ y∨ (b∧ y′) = (a∨ b∨ y)∧ (a∨ y∨ y′) = (x∨ y)∧ (a∨ y∨ y′) =
y∧ (y∨ (a∨ y′)) = y, so y ∈ F .

If x,y ∈ F , then there are pairs (a,b),(c,d) ∈ S such that a∨b = x and c∨d = y. We cal-
culate now ((a,b)∪(b,a))∩((c,d)∪(d,c)) = (a∨b,a∧b)∩(c∨d,c∧d) = (x,0)∩(y,0) =
(x∧ y,0) ∈ S and since x∧ y = (x∧ y)∨0, x∧ y ∈ F .

We prove now that N(H,F) = S. It is clear that S ⊆ N(H,F). If (a,b) ∈ N(H,F), then
a ∧ b = 0 and a ∨ b ∈ F , and therefore there exists (c,d) ∈ S such that c ∨ d =
a∨b. Then (c,d)∪ (d,c) = (c∨d,d∧ c) = (a∨b,0) ∈ S. Since p1(S) = H, there is some
b′ ∈ H such that (b,b′) ∈ S and therefore (b,b′)→ (0,1) = (¬b,b) ∈ S. So we can write
(a∨b,0)∩ (¬b,b) = ((a∨b)∧¬b,0∨b) = (a,b) ∈ S, because from a∧b = 0, a≤ ¬b and
then (a∨b)∧¬b = (a∧¬b)∨ (b∧¬b) = a∨0 = a. �

3. JOIN-IRREDUCIBLE ELEMENTS IN V (H)

A. Sendlewski determined in [20] the Priestley topological space corresponding to
N(H,F) for any Heyting algebra H and F one of its filters containing Ds(H), which is
the intersection of all the maximal filters of H.

Definition 3.1. An element p of a lattice L with first element 0 is join-irreducible if p 6= 0
and if p= a∨b implies p= a or p= b. We shall denote with π(L) the set of join-irreducible
elements of L.

Definition 3.2. If x is an element of a Heyting algebra H, the pseudocomplement of x or
intuitionistic negation of x, is the element ¬x = x⇒ 0. It is easy to prove that x∧¬x = 0,
for every x ∈ H.

Theorem 3.1. Given a finite nontrivial Heyting algebra H, the join-irreducible elements of
V (H) are the elements of the form (x,¬x) with x ∈ π(H) or (0,y) with y ∈ π(H∗).

Proof. Let p = (q1,q2) ∈ π(V (H)). Then,

p 6= (0,1), (*)

so q1 6= 0 or q2 6= 1.
If q1 6= 0, let us see that q1 ∈ π(H) and q2 = ¬q1.
If a1,b1 ∈ H and q1 = a1∨ b1, then, as (q1,q2) ∈ V (H), 0 = q1∧ q2 = (a1∨ b1)∧ q2 =

(a1 ∧ q2)∨ (b1 ∧ q2), thus a1 ∧ q2 = 0, b1 ∧ q2 = 0 and therefore (a1,q2),(b1,q2) ∈ V (H).
Then, from (q1,q2) = (a1 ∨ b1,q2) = (a1,q2)∪ (b1,q2), as (q1,q2) ∈ π(V (H)), we have
q1 = a1 or q1 = b1.
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From q1 ∧ q2 = 0 follows q2 ≤ ¬q1. Then, (q1,q2) = (q1 ∨ 0,¬q1 ∧ q2) = (q1,¬q1)∪
(0,q2), which yields (q1,q2) = (q1,¬q1) or (q1,q2) = (0,q2), but as q1 6= 0,(q1,q2) =
(q1,¬q1).

If q1 = 0, then, by (∗), q2 6= 1. Let us prove that q2 ∈ π(H∗). If q2 = a2 ∧ b2, then
(0,q2) = (0,a2 ∧ b2) = (0,a2)∪ (0,b2) and as (q1,q2) = (0,q2) ∈ π(V (H)), this yields
q2 = a2 or q2 = b2.

Conversely, if p = (q1,¬q1) with q1 ∈ π(H), then:
(1) q1∧¬q1 = 0, so p ∈V (H).
(2) q1 6= 0, and therefore p 6= (0,1).
(3) If p = (a1,a2)∪ (b1,b2), with (a1,a2),(b1,b2) ∈ V (H) then q1 = a1 ∨ b1, which

yields q1 = a1 or q1 = b1.
If q1 = a1, q1 ∧ a2 = a1 ∧ a2 = 0, so a2 ≤ ¬q1. As, on the other hand, ¬q1 =

a2∧b2 ≤ a2, we have a2 = ¬q1.
Similarly, if q1 = b1, then b2 = ¬q1, from where we conclude that p = (a1,a2)

or p = (b1,b2).
If p = (0,q2), with q2 ∈ π(H∗), then q2 6= 1 and therefore p 6= (0,1). If now p = (a1,a2)∪
(b1,b2), then a1 ∨ b1 = 0, so a1 = a2 = 0 and q2 = a2 ∧ b2, therefore, q2 = a2 or q2 = b2,
this is, p = (a1,a2) or p = (b1,b2). �

Remark 3.1. In the previous proof we only used the fact that H is a distributive pseudocom-
plemented lattice with first and last element, this is, a bounded distributive lattice in which
for each element x there exists the greatest of the elements z such that, z∧ x = 0. Therefore,
the theorem is valid for M(L,{0},L) with L in those conditions.

Remark 3.2. Let us denote with F1(u) the special filter of the first kind (H. Rasiowa [18,
p. 90]) generated by an element u in a Nelson algebra. A. Monteiro proved that F1(u) =
F(∼ ¬u), where ¬x = x→ 0. If we now consider the Nelson algebras of the form V (H), we
have that

F1((x,y)) = F(∼ ¬(x,y)) = F(∼ ((x,y)→ (0,1)) = F(∼ (x⇒ 0,x∧1))

= F(∼ (¬x,x)) = F((x,¬x)).

F2(a) = {x ∈ A : ∼ x→∼ a = 1} is the special filter of the second kind generated by the
element a. Let us see that F2((x,y)) = F((0,y)):

If (u,v) ∈ F2((x,y)) then ∼ (u,v)→∼ (x,y) = (1,0), which is equivalent to
(v,u)→ (y,x) = (1,0), this is, (v⇒ y,v∧ x) = (1,0). We have then that v⇒ y = 1 from
where v≤ y and as 0≤ u, then (0,y)≤ (u,v).

If now (0,y) ≤ (u,v),v ≤ y. As (x,y) ∈ V (H),x∧ y = 0, which implies that y ≤ ¬x and
therefore v≤ y = y∧¬x, from where it results that v≤ y and v≤ ¬x, and then
∼ (u,v)→∼ (x,y) = (v,u)→ (y,x) = (v⇒ y,v∧ x) = (1,0), so (u,v) ∈ F2((x,y)).
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