THE SET OCF GAUSSIAN FRACTIONS
A .Benedek and R.Panzone.

ABSTRACT. The set F of complex numbers that have a binary
representation in the base b= -1+i with integer part zero has a
boundary which is a Jordan curve J. We exhibit a parametric
representation of J. It is the union of six similar Jordan arcs
and each of them is a selfsimilar set that satisfies Moran’'s
open set condition (cf.[1] or [3]). The interior domain of J is
a uniform domain. The convex hull of J is an octagon and those
of the mentioned arcs are decagons.

1. IRTRODUCTIOH. A complex number will be called a gaussian
fraction, or simply a fraction, if it belongs to the set (see

Fig. 1):
-1

F={feC:f= S a.bd, a.e D}
= % 3

where b= -1+i, D= {0,1}. E will denote the set of gaussian
integers : E = {u+iv : u,v € 2}. For g € E we write Fg:z g + F.
Therefore F = FO' A theorem of Katai and Szabdé ([10]) asserts
that C = U {Fg: g € E }. Our first step is to prove that J = aF
is a Jordan curve. In relation with this cf. S. Ito [8]. We use
in an essential way results of the fundamental work of W.
Gilbert on bases for number systems ([4]-[8]). HMost of them are
stated in the next two paragraphs and a few are proved again in
the text. Proofs of the needed statements may also be found in

[13]. For other minor but useful results see the Appendix.

L .
1.1. NUMBERS WITH TWO REPRESENTATIORS. For z = 3 pij, pje D,
-0
let us define the state k of this representation of z as p(k) :=
L . -k L .
( 2 pij)-b €¢ E. If z = 3 quJ is another representation of =z

J=k
then for any kK € L, p(k) - gq(tk) €¢ 5§ := {0,1,-1,4i,-31,1+i,-1-1i},
(ef.[51). He call state k of the representations the pair

-0

(p(k),q(k)) and describe its type symbolically as follows

{paj if p(k)-q(k)= 0 ; pjq if p(k)-q(k)= -1 ; g if p(k)-a(k) =i;
5+3 if p(ky-q(k)= -1-i, ete.

If z is a number with two different representations we can
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always choose L great enough to have Py = Q= 0 and therefore the
state L for them is |pg|. As k decreases from L to -w,
(p(k),q(k)) leaves that type in a certain moment n and reaches
the type p|q or g|p. We can assume, may be after relabeling the
representations, that (p(n),a(n)) € p|q. For k=n,n-1,...
(p(k),q(k)) follows the arrows of the graph I', (see Fig. 2).

If (p(k),a(k)) is of type of a node of I', the column beside an
arrow that goes from this node to another one has entries equal

to Pr-1 and Ap_1- These ciphers produce the transition from

state (p(k),q(k)) to state (p(k-1),q(k-1)) via the equation
(%) p(k-1) - q(k-1) = (p(k) - a(k))b + (Pk_l— qk—l)'

THEOREM 1. a) Each number with two different representations is
associated to an infinite string in the graph T that starts in a
node of the graph. Conversely, each such an infinite string is
associated to a number z € F with more than one representation
that is uniquely determined if p(0)= O, q(0) € S\{0}.

b) Fg N F is not void if and only if g € S.

c¢) Numbers of the form wbm, w € E, m an inteder, have only one
representation.

The numbers described in c¢) will be called rational numbers.

1.2. NUMBERS WITH THREE REPRESENTATIONS. These numbers are
associated to infinite strings of the graph ¥ in Fig. 2, (cf.
[53). More explicitly : if 2z is a number with three different

representations
L . L i L i
(k) z=53 pib' =3 q;b =3 rbt,
-0 -0 -0

there exists an n such that the states p(n), q(n), r(n) are all
different. They belong pairwise to types of graph I' only if they
are related as in one of the nodes of v. Then, the ciphers
(pn—l’ Q1 rn—l) are uniquely determined by the graph I' and

appear in the column beside the arrow in v that points to the
node of the type of the next state (p(n-1), gq(n-1), r(n-1)).
THEOREM 2. a) Let =z be a number with three different
representations (k%) and p(0) =0 # q(0) ¥ r(0) ¥ 0. Then
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pP(0),q(0),r(0) are related as in one of the nodes of T and the
successive ciphers of these representations can be read,
following the graph, from the columns beside the arrows.

b) Each infinite string of v that starts in one of its nodes
defines a unique complex number z € F if p(0)= 0. The ciphers of
the three representations of z are the entries in the columns
beside the arrows.

¢) There is no number with four representations.

Observe that if we add a non-null gaussian integer to a number z
with three representations we obtain another number w with three
representations; z and w are associated to the same infinite
string of v. These numbers are ultimately periodic with period
001 or 110.

1.3. AUXILIARY LEMMAS. In this paragraph we isolate some results
that are used in what follows.

LEMMA 1. i) If g € E, |g| s 2/%4 3, k a nonnegative integer,
then g has a representation with no more than k + 10 ciphers.

ii) If 2 € C, |z| < 22 then z € F.
PROOF. i) holds for k=0 : the gaussian integer of modulus less
than or equal to four with longest radix representation is

-3 + 2i. It has ten ciphers (cf.table 1, Appendix). Assume i) is

true for k. If |g| = g(k+ld/2 3, g=r + bgo , r €D, g, € E,
then we have

lgg] < (gj+1y/(b] s 29720 4y, 2 ¢ i)k 4 3.
Therefore, gg needs no more than k+ 10 ciphers and g no more
than k+ 1+ 10.

ii) Suppose [z| < 27°. For j 2 10 let g ¢ E be such that

|26 - g | < 1. Then [g ] = 1+ |b)IT10 ( 203710072, 5

j-1
Because of i), g.= S a .bk. Therefore, the sequence {z.},
J k=g k.3 3
. -1 r
zj= gjb J_ r=§j ar+j,jb € F, converges to z and contains a

subsequence {zj} such that the ciphers with the same fixed
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subindex in its elements are constant from some moment on.

In consequence, z has a representation of the form 0.p_;p ,...
and belongs to F, QED.

We call a sequence like {zj} a telescopic sequence. It has the
property that the representations of its elements converge
pointwise to the reperesentation of lim zs, that surely exists.
We denote with FXx the set of rational numbers in F

-1
FX := { S arbr}.
-N

LEMMA 2. 1) The set FXx is contained in the interior of F, F°.

2) F = F7.
PROOF. Because of Lemma 1,1ii), 0 € F°. Let us define
(1) Qo(z) = z/b , @1(2) = z/b + 1/b.

Then, F = @O(F) u @1(F) and QD(F°) u Ql(F°) is contained in F°.

Since 0 € F°, if z=0.a_ a_ _ then z = @ c...0®  (0) € F°

1- -8, a_y i

and 1) follows. 2) is a consequence of F = (FX) , QED.

LEMKHA 3. Let g € S\{0}. Then, z € F n Fg if and only if z is
associated to an infinite string of the graph I' that starts at
the node corresponding to the type of the state (0,g).

PROOF. In fact, z = 0.p_4P _,... = (8)y-9_49_5- > QED.
COROLLARY 1. If O + g € Sand z € F N Fg then neither radix

representation of z has more than four consecutive equal ciphers
after the point.

PROOF. To prove this it is sufficient to examine the diagram of

graph T and observe that the state (p(0),q(0)) = (0,g) is not of
type |pa|, QED.

COROLLARY 2. F° N Fg = g.

PROOF. In fact, for ze F_, z = lim Zys 2z = (g)b.a_la_z...a

g N —> w -N

Since rational numbers have a unique representation, Zy £ F. In
consequence, 2 £ F°, QED.

i.4. THE BOURDARY OF F¥. We call J the boundary of the closed set
F, J = aF.
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DEFINITION 1. A =F n F
C=FnF

A =FNF .; B=FNF,; BD=FnNF

1 -1’ i -3

1+i° cCT=Fn F-l-i'
From Th.1,b) and Cor. 2 it follows that
J=AUATUBUB  UCUZC".
LEMMA 4. i) z € A if and only if 2zb € B,
ji) z € C if and only if zb + 1 € A,
iii) z € B if and only if zb + i € C U B or zb + (1+i) € C,

iv) y € F0 n F1 n F-i= AN B~ if and only if y = 0.0071

(1 - 2i)/5 = 1.100,

zeFygNF , NF , , =B nC if and only if z = 0.1I01 =
= ("3 - 4i)/5:
X € FO n F1 n F1+i = ANC if and only if x = 0.017 =
= (2 + i)/5 = 1.710,
v) u € Fn F_1 N F—l—i = A~ n C~ iff u = (-4 -2i)/5 = 0.7100,
v € Fn F_1 N Fi =B N A" iff v = (-3 + i)/5 = 0.110,
weFn Fi n F1+i =B NC iff w = (1 + 3i)/5 = 11.007,
vi) g =AN(BUAUC )= €CNnN (A UCTUB™) =

= B N (CT UB” UA).
PROOF. i) z € A if and only if z = 0.p_ypP_,... = 1.9 49 5...
Then, (p(0),q(0)) € p|q and from the graph I' it follows that
P_4= 0, a_4= 1. Therefore, zb = 0.p_,P_g5... = 11.9_,... € B.
Conversely, from these equalities we get
(2) z =0.0p_op 4... = 1.19_,a_5--- € A.
ii) If z € C then z = O.p_lp_z... = 1110.9_49_5... . The

infinite string starts from the node 5*3 . Then p_4= 0, a_4=1
and zb = 0.p_,... = 11101.9_,... . Therefore, zb+ 1 = 1.p _,... =
=0.q_,... € A, (cf. Appendix).

Conversely, it follows from these equalities that z € C.

iii) z € B is equivalent to z = 0.p_,;... = 11.9_4... ; then
(p(0),q(0)) € g . There are three nodes that can be reached

from this one in the first step. Therefore, we have the
17



following possibilities

0.p_5... = 111l.q_,... or
(3) zb = < O.p_z... = 110.q_2... or
1.p_2... = 111.q~2...

1-i ©°F zb € F1

Conversely, from (3) it follows that z € B, (this means that the

That is, zb € F N F_. or zb € F N F_ n F_

i i’

arc wv verifies : b.arc wv = arc um , cf. Fig. 1).
iv) and v) are the contents of Cor. 4 in [5]. For example, y =
0.p_1... = l.q_l... = lll.r_l... ; looking at the graph v we see

that (p(0),q(0),r(0)) € §+2 . Then y = 0.00T, QED.
COROLLARY 3. i) A = 83,(B),
ii) C = 85(A) - 1/b,
1ii) B = (85(C) - i/b) U (85(C) - (1+1)/bd U (B,(B) - i/b).
1.5. THE SET A. ¥Ye define next three similarities
(4)  ©(z) = z/b + 1/2 5  Q,(2) = 2/b° + (1+i)/4 ;

Q.(z) = z/b° +(1-1)/4.

From table 1 we get : 1/2 = 1.11, (1+i)/4 = 0.011, (1-i)/4 =
= 0.001, (cf. also [5]).
LEMHMA 5. i) A = Ql(A) u QZ(A) u 93(A)

ii) QZ(A) n QB(A) =g

111) ©,(8) N Q,(A) = {2,(¥)} 5 2 (¥) = 2y(¥) = (2+i)/10
= 0.017100 ;
iv) Ql(A) N QS(A) = {QI(X)} H QI(X) = Qs(x) = (4-3i)/10
= 0.00107 ;

v) A is a self-similar set whose similarity dimension is s =

= 2logu/log2, where p is the positive root of the polynomial

W - w2, (u= |b)5= 2572 & 1.6956, s & 1.52).
vi) x = Q,(x%), ¥ = Q4(¥).

PROOF. i) We obtain froam Cor.3 that
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@2y - 1/b% - /by U @2 - 1/b% - (1+8)/b) U (A - i/b),

oo}
H

o
]

- - 3 3 .
QO(B) = (QO(A) + §0(—1/2)) u (QO(A) + Qo(l/Z)) U
u (QO(A) + Qo(i/z - 1/2)).
Then A = QZ(A) u QS(A) U QI(A)'

ii) The action of each function Qi on the radix representation
is as follows (c¢f.(2)) where in each formula the points

represent the same string of digits

.(0.0p_,...)
(5)<| 2,(0.0p_,...)
.(0.0p_,...)

1.119_2... H Ql(l.lq_z...)
0.0110p_,... ; 2,(1.1q9_,...) = 1.1101q_,..

0.00q_,...

0.0010p_,... ; Q3(1.1q ,...) = 1.1001q_,..

If z;, = 0.0p_,... and z, = 1.1q_,... belong to A and z Qz(zl)=

= Q5(z,) then 0.0110p_,... = 1.1001q_,... . But this is
impossible because there is no infinite string in I' with this
beginning.

iii) Assume z € Ql(A) N QZ(A). Then, there exist zl, Z, € A such
that z = Ql(zl) = Qz(zz). By (2) we can assume that z,=

=0.0p_,... = 1.1 ,... and zy = O‘OP—ZP—B“' . Then, using
(5), z = 1.11p_,... = 0.0110P_,... = 0.00q_,...

In this case bzz has the following three representations

bz = 111.p_,... = 1.10P_,... = 0.q_,... . Therefore, b’z ¢

€ FO n F1 n F—i' From Lemma 4 we get bzz = (1 - 21)/5, that is
z = (2 +i)/10.

iv) Let z = Ql(zl) = 93(22)’ zy = 0.0p_z... = 1.1q_2...,

zZ, = O.OP_Z... = 1.1Q_2... . Then 2z = 1.11p_2... = 0.00q_2... =
= 0.0010?_2... = 1.1001Q_2... . Therefore,

b%z = 111.p_,... = 0.q_,... = 110.01@_,... € F_, N Fy N F_, ..

In consequence bzz = (-3 - 4i)/5 = 0.7107 (cf.Lemme 4,iv)) and
z = (4-31)/10 = 0.0010T. v) and vi) follow immediately. QED.
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2. SELF-SINILARITY OF A. We wish to prove that A is an s-set
i.e., that 0 < HS(A) < », where s is the similarity dimension of
A. In view of Hutchinson's theorem it suffices to show that
Moran’'s open set condition holds and this is the content of next
theorem 3. We generalize our earlier notation as follows : let
ay...8g.8_q...8), 85 € D, be a rational number. We write

F := {2 = 8;...8,.8 ....8,C C o...5 ¢ €D}
8y...8q.8 5...8) L 0 1 k“k-1"k-2 m

A set of this kind is termed a tile of order k. Then, from Cor.
2 of Lemma 3, Th. 1,b), we get

(6) F° n F° ¢, k 2 h, implies that
85-8_q---8y bO'b—l"‘bh i
a. = b. for i 2 k.
i i

Observe that (6) holds even in the case when ag and b0 are not

binary digits but denote gaussian integers.
[+ ]

and V := U U {Qi-...ogi(f)
r=1 r 1

THEOREM 3. Let f := F§ 011144

:ij € {1,2,3}}. Then, V is a bounded open set such that,
i) Qi(V) cV, i= 1,2,3,

ii) Qi(V) N Qj(V) = p for 1 $ J.

To prove the theorem we shall use two auxiliary lemmas.

LEMMA 6. Assume that F; a ....a = Qi -...-Qi (f). Then, ag= a
0" "-1 h r 1

and the sequence {a_l,...,ah} does not contain five consecutive

-1

ciphers 1, except for the last ones.
PROOF. The action of the similarities on tiles is shown in the
following formulae (cf.(5)):

QI(F = F

[
2

QI(F

0.0...° 1.1...7 7

1.11... ; 0.00..
(7Y < Q@ (Fy 5 ) =Fggygg. .. + 2F; 1 ) =F 1101,
Q.(Fy g ) =Fga010... 5 93F1 1.0 7 Fy 1001.

In each equality the points represent the same sequence of
ciphers. The case r=1 is proved by the left formulae in (7).
Assume it holds for r-1 2 1.
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Let Qi 0...‘Qil(f) = Qir(Fg

> with {bj} verifying
r

b ,...b

0" -1 h
the inductive hypothesis. From (7) we see that if ir=2’3’ a
sequence of five consecutive digits 1 cannot appear after the
point, except in the case in which exactly five digits equal to
1 appear at the end of the sequence {b—lb—Z"'bh}' If i.=1 to
have five consecutive digits equal to 1 not at the end it is

necessary that F;U‘b~1"'bh= FO'Olll"'bh- But this last tile

cannct be of the form Qi -...-Qi (f) since neither right hand
r-1 1

side in (7) is of the form F0.0111...’

LEHMA 7. Let m,k < 0 and by.b_g...by. ag-a8_y...8, be the

n
representations of two complex numbers with b0= b-l' If there
exist j,,...,3, € {1,2,3} such that

QED.

Q. s...°Q. (F? ) = F?

NI 3y bO'b—l"‘bk ag-8_q---8,
then jl,...,jn are uniquely determined.
PROOF. Let us call G0= Fg b ... p @and Gh= Qj (Gh—l)’

0" "-1 k h
h=1,2,...,n. Then
F? = Q. e...0Q, (G, ).
ag-8_q-- -8y Jq Jpe1 B

G, is a data. Assume we know Gy, Gy = Fgé-bil---bﬁ » bg = b 4.
In view of (7) it follows that,
fm-(L+1) T Py implies j, ., = 1.
qp-(L+1) ~ Pl1 s Bppey 7 1 implies §, .= 2,
qp-(L+1) - P21 ¢ Bpopey "V implies 3., =3
Then, Jp4+q 15 uniquely determined and so is Gh+1’ QED.

PROOF OF TH.3. i) is obvious. In view of (7), V¢ F U F1 and V
is bounded. Let us prove ii). It is sufficient to show that

9g ooty () 0@y el @y (£) 2 g AE (Lpelip) f Gpeendyp).

h
Suppose that

(8) Q. «...-Q. (f)= F?°
i iy ag.8_y...8)

21
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;3 Qo e...Q. (f)= F?
3 ag.a’y...a;
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have a nonvoid intersection and that k 2 m. Then aj= aj for

J=0,-1,...,k (ecf.(6)). Since ak+4= ak+3= ak+2= ak+1= ak= 1, we

must have k=m because of Lemma 6. Now, Lemma 7 implies that
(i,...14) = (Jy...34), QED.
3.REGULARITY OF A. We call P the middle point of the segment x,y
(cf.Lemma 4). That is, P= (x+y)/2= (3-1)/10= ((-3+1)/5)e(-1/2)=
= ve(-1/2). Then, P = 0.71I0 - 0.11 = 0.001I0 = 1.1710 € A.
We denote with S the rotation around the point P

S(z) = ((3-1)/95) - z
PROPOSITION 1. S(A) = A.
PROOF. -v (3-1)/5 = 1.T . Let z be as in (2). Then S(z) =
1.1p_,p 5... = 0.0 ,9 5... where p; =1 -mp;, Q; =1 - qy

and S(A) ¢ A. Applying S to both sides, we obtain

A = s%(a) ¢ S(A), QED.

We have introduced the transformation S to change one of the
similarities that define A without changing this compact

invariant set. We define
To(z) 1= Q,(2) = 2/b° + (1+i)/4,

(8) <] T,(2) := ©,(8(2)) = -z/b + (1-2i)/10,
T,(2) 1= 9(2) = 2z/b° + (1-1)/4.

Because of Prop.l, Lemma 5 can be rewritten as follows.
PROPOSITION 2. A = TO(A) U Tl(A) u TZ(A) ; TU(A) N TI(A) =

= {To(y)} = {Tl(x)} = {(2+1i)/10} ; TO(A) N TZ(A) = g;
TLCAY N To(A) = {T,(¥)} = {T,(x)} = {(4-31)/10}.
3.1. AUXILIARY PROPOSITIOBS. Let us assume that

[} . [ .
_ -3 .o . .
(10) ¢ = % aj 3 , t° = % aj 3 ; aj,aj € {0,1,2}.
PROPOSITION 3. i) Let aj= aj for j < K and ak > ag -
. -N .o . - -
If |t -t |< 37, N2 K, then ag = aK + 1 and aj + 2 = aj = 2

for j such that K+ 1 £ j < N.
ii) If £t = t° then t° = (O‘al"'aK—l(aK+1))3 =
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=t = (O'al"'aK—laKZZ"')S'
PROOF. ii) follows from 1i).

0
.y N . o -K - -J -
i) 3 > % (aj aj)3 = (aK aK)3 + §+1 (aj aj)3
-k 2 -3
= (aK-aK-l)B + 3 (2 + aj - aj)3 .

K+1

Taking into account that the last parentheses are nonnegative
and at least equal to 1 if not 0, i) follows, QED.

PROPOSITION 4. The diameter of F is less than 2.

If BZ= {'zl < 2} then Ti(BZ) c B2 . Besides, if Zy, 2, € B2 then

i) |z, - z,f|b] N = ITa, -+ Tag(®1) = Ta -+ Tq ()] <
< |zg - 2] b "
1) |7,75 2y - 1y zp| < 8ypy 2N,
N-1 N-1 3N

2-
szTU (zl) - Tsz (zz)l < 8|b| A
-1 .
PROOF. Let z = 2z - 2z, with z, € F. Then z = § dij,

-0

dj € {0,1,-1}. Observe that

2 2, _\J
(11) |d3j+ d3j+1b + d3j+2b ] £ |1 -b+ b7] =\/13.

o .
In consequence, [z| < \}13 > 2_33/2 < 2 and F c BZ' It is easy
1

to see that Ti(Bz) c BZ’ i=0,1,2. i) follows by induction from

-3 . .
(12) |75(z9) - 75(2))]| 24~ 2z,]|b] “, 3=0,2;

it

- -1
|Tl(zl) - Tl(zz)l = ]zl— zz]lbl .

N-1 N

.. . _ -1 -
ii) First observe that The1To (x) = ThTz (y) for h=0,1. The

inequalities we are looking for are obtained then from the
triangle inequality and the following estimates, which are
corollaries of (12)

N-1 N-1 2-3N 2-3N

(13) < |Tk70 (zl) = TxTo (x)| < gzl— x|ibl < 4|b| s
N-1 N-1 2-3N 2-3N

IThTz (zz) - TETo (v)| = |zz— v||b| < 4|b| 5



where k = 1, 2 and h = 0, 1. QED.

3.2. THE BOUNDARY OF F IS A SIMPLE CLOSED CURVE. The purpose of
this paragraph is to prove next theorem.

THEOREM 4. A is a Jordan arc with initial point x = 0.011 and
terminal point y = 0.007.

Assuming the last statement, a description of the boundary of F
follows immediately.

THEOREM 5. i) J = aF is the union of six similar consecutive
arcs A, B~, C°, A", B, C (see Fig. 1) which join the points

X, ¥, 2, 1, VvV, W,

ii) J is a Jordan curve with Hausdorff dimension s and

0 < HS(J) < w, (cf.[7],[81),

iii) For sny p € J and any ball Br(p), HS(Br(p) nJ) > 0.

PROOF. i) and ii) follow from Lemma 4 i), ii), iv), v), Lemma 5
v) and Th. 1. iii) follows from the self-similarity of A, QED.
Let us recall that s = 2logu / log2 and p= |b{S is the positive

root of u3— uz— 2 = 0 (¢f. Lemma 5). At this stage it is not

difficult to prove next theorem where m(.) denotes the plane
Lebesgue measure.

THEOREM 6. H®(J) = 2(1 + u + 1/wWHS(A) ; m(F°) = m(F) = 1.

The last statement is a consequence of Th. 5 and the fact that

{Fg: g € E} tiles the plane (c¢cf.Cor. 2 and Prop. 4).

PROOF OF THEOREM 4. Assume t € {0,1]. Let us define f

o] .
(14 t = 5 a.3™9
1 J

where aj € {0,1,2}. To prove the theorem it will be sufficient

> f(t) = 1lim T ... T (G
: n —> a1 an

to prove the following statements

i) f(t) is well defined,

ii) £([0,1]) c A,

iii) f£(t) = x if and only if t = 0 ; f(t) = y iff t = 1,

iv) f is one-to-one and continuous,

v) A c £([0,1]).

i) Prop. 4 i) implies that the limit (14) exists. Let t and t°
be as in Prop. 3 ii). Then, for N 2 K, from Prop. 4 i) and ii},
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we get
T ...t_ (0 -1 _....71_.(0)]=s |b
ITay g (® " Tajee Tag(@1S (b
2K-3N

1-K N-K N-K

T T 0 - 1_.7 (0)]=
' ag 2 ag 1] I
< 8|b| . Consequently, for N ——> o, |f(t) -~ f(t’)| = 0.

ii) f(t)e A since A is the invariant set of the similarities T
iii) Given t = (O.alaz...)3 call t1:= 3t - a; = (O.azas...)3.
Then

(15) f(t) = Tal(f(tl)).

Assume that f(t) = x. Since x ¢ Tl(A) U TZ(A), from x =
= Tal(f(St - al)) it follows that 84= 0 (cf. Prop. 2).
But x is the fixed point of T and so £f(3t) = x. Continuing in
this way we obtain ay= 0 for all j. Conversely, f(0) = x.
With the same procedure one proves the second part of 1ii).
iv) Suppose f(t) = £(t°), t and t° as in (10). Suppose ay= a.

J
for 3 < K, aK< ag - Define

[ ] . 2} .
t, = 3 a, 397 bl =5 e gk-3-1
K 9 K Y
From (15) we get
f(t) = v_ ...7T (F(t,)) , f(t°) = v ...7 (f(t:))
al aK—l 1 al aK~1 1

and therefore f(tl) = f(ti). Using again (15) it follows that
T (f(3t1— aK)) = Ta’(f(Sti - ak)). Therefore ak = a8y + 1

R K
and y = f(3t1— aK), X = f(Sti - ak)), (cf.ii) and Prop. 2).
But 1ii) implies 3t1— ag = 1, 3ti - ak = 0. Then,
3(t1— tl) =1 + ag ~8y = 0, and t = t°.
The continuity of f : assume that 0 < |t - t"| < 37N Then, if
N 2 K, from Prop. 3 i) and Prop. 4, we get
f(t) - £ D)} = v ...7T (f(t.)) - 1 ...7T (F(t))| £
| = ey Tay 00 ayTag TR
. 1-K _ N-K : N-K 1-K
S |£(t)) - £CE||b] = |TaK72 (21) - Ta.Tg (z,)|b] <
< 8|b|2K_3N < 23—~N/2

But, if N < K-1, |f(t) - £(t")| < |£(ty) - f(ti)||bl‘u < 2-N/2

v) Let z € A. Then, z = Ta (zl) with zle A (Prop. 2), whence
i
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z =71 ...1t_ (zy4), 2,€ A. But
a4y ay N N

-N  ,1-N/2
o Ta (2D T Ta, a0l € lzgl|b] " S 2

I7a
1

This means that z = f(t), t = (O'alaZ"')S’ QED.

4. F° IS A UNIFORM DOMAIN. Our purpose now is to prove that the
interior domain of the curve J is a quasi-disk. For this we show
in Theorem 7 that J satisfies Ahlfors’ condition ([11], Ch. 1).

PROPOSITION 5. There exists K > 0 such that if 0 = t, < t = tzs 1

1
then

(16) |ECt) - £Ct)| < E|£CEy) - £CE )]
PROQOF. From (9) we obtain
(17) TyT,(2) = Toz(z) + (4b)‘1 ;o TyTe(2) = TgT1(2) + (4b)-1,

and from (17) and (14),

(18) f(t + 2/8) = f(t) + (4b)—1 whenever 0 £ t £ 1/9 + 1/27.

Then, the subarc of A with parameter t € [1/3 - 1/8, 1/3 + 1/27]
is a translation of £([0, 1/98 + 1/27]). Because of the symmetry
of A (cf. Prop.l1 and Lemma 5 1)), or after checking as before,
we also obtain that f([2/3 - 1/27, 2/3 + 1/9]1) is a translation
of fF([1 - 1/8 - 1/27, 1]}). We cover now the unit interval with
five subintervals : [0,1] = I1 u IZ u 13 U I4 U 15 =

= [0,1/31 Y [1/3 -1/8, 1/3 +1/27]1 U [1/3, 2/31 U

U [2/3 - 1/27, 2/3 + 1/8] U [2/3, 1].

Accordingly, A = Wl u "2 u H3 u H4 U H5 where wj:= f(Ij).

To prove (18) we consider two cases : a) there exists j €
{1,2,3,4,5} such that f(tl)’ f(t2) € Wj ; b) there is no such J.
Let d be the infimum of the distances between pairs of points of
A that verify b). d is positive. So, in case b),

|f(t1) - f(t2)| 2 d and (18) holds with K = (diam A)/d.

In case a), because of the comment below formula (18), it is
enough to consider j € {1,3,5}. Let j = 2k + 1, k € {0,1,2},

tl, t2 € Ij’ tls t < tz. We define ti = 3t1 - k ; té = 3t2 - k ;
t° = 3t - k. Then, because of (15), f(t') = T;l(f(t)).
Therefore, (16) holds if and only if
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(19) |f(t') - f(ti)| S K|f(té) - f(ti)].
This new pair (ti,té} verifies

(20) \[g |f(t1)—f(t2)| 2 |f(ti)—f(té)| 2 \[g |f(t1)-f(t2)| > 0.

Repeating this procedure if {ti,té} verifies a), we reach after

a finite number of steps (and for the first time) a pair

{tl, tz} with |f(t1) - f(tz)l 2 d, QED.

REMARK. We have constructed in this way a similarity u such that

un({f(t); t1 <t < tz}) is contained in A and
|u(f(t1)) - u(f(tz))' = d.

4.1 .CENTER OF SYMMETRY OF F. Consider the numbers 2g= -(2+1)/5
=0.T, ¢ = zg /2 and define

(21) W(z):= zg - 2.
If z = O.a_la_z... and w = W(z) then w = 0.(1-a_,)... and W(w)
z. That is, z € F iff w € F. Because of w - ¢ = ~(z - ¢), ¢ is

the center of symmetry of F. One can also easily verify that
(22) W(A) = A~ ; W(B) =B~ ; W) =C".

4.2. J IS A QUASI-CIRCLE. J(s) will denote the positively
oriented Jordan curve composed of the succesive arcs
A,C,B,A",C",B”. J is a simple curve because of Lemma 4. These

arcs are all similar to A and verify

( B~ = FO n Flll = bA -1
c~ = F0 n F110 = A/b + 1/b
(23) < A" = F0 n F11101 = A -1
B = F0 n F11 = bA
i C = F0 n F1110 = A/b - 1/b

Assume that a, B € J. laBl will denote the positively oriented
arc on J with endpoints a, B.

THEOREM 7. There exists K > 0 such that for any pair {a,B} € J
it holds that

(24) inf {diamlaBl , diamlBal} < K| - af.

PROOF .First of all notice that the ares A" U C”T UB", AUCUB,
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B~ U A, BUA" are similar to subarcs of A. In fact, let
T := z/b3 + 1/2. Writing the effect of T on the radix
representation of 2z, we have (cf.Appendix)
T‘(aL...aD.a_la_z...) = [aL...a4(a3+1).(a2+1)(a1+1)a0...].

Therefore, T“(FO) c Fl ; TA(FIIIOIU FllOU Flll) c FO' That is
(25) T"(A~ UC~ UB~) c A.

Also, from (22) we obtain with T(z) := T (¥(z)) that

(28) T(A UC UB) c A.

On the other hand, the mapping T (z2) := (z - 1) / b4 is such
that T’(FO) c F1 and T'(FIU Flll) c FD. Therefore,

(27) T°(B~ U A) c A.

If T"(2) := T'(W(z)), again from (22) we get

(28) T"(B U A™) ¢ A.

To prove Th.7 we consider the alternative : i) both points a,B
belong to one of those four ares, ii) else. In case i) the
theorem follows from (25)-(28) and (18). In case ii), a and B
belong to non consecutive arcs. Then, there exists p > 0 such
that |a - B} 2 p. In this situation (24) holds with K =

= (diam J)/p, QED.

COROLLARY 1. i) J is a quasi-circle ,

ii) there exist a,b and r > 0 such that for any set U c J with
0 < JU] £ r there is a mapping u : U ——> J such that

(29) a|X - Y| = jU| Ju(X) - uw(Y)] £ b}X - Y| if X,Y € U.

1ii) Moreover, u(i) c A, |u(U)i 2 d.

PROOF. J is a quasi-circle since it is the boundary of a
quasi-disk. Let A° denote the open arc A\{x,y}. Because of Th.b
i) and formulae (25)-(28) it is sufficient to prove (28) for
sets U ¢ A° of small diameter. Because of Th. 7, it will suffice
to show that (28) holds for small closed subarcs of A°, say of
diameter less than or equal to r. Assume further that r is such
that if |U| = r then U is included in one of the sets Hj,
3=1,2,3,4,5. Such a number exists and because of Prop. 5 we
have r £ d . The remark following it assures the existence of a

similarity u, v : ¥ —> A, such that |u(U)| 2 d. Then we have,
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1A

(30) d = ju(u)] |A] = 2

(31) U}/ |u()] (X - Y|/|u(X) - u(Y)].

Combining these relations one obtains (29), QED.

COROLLARY 2. If E is an s-set satisfying i) and ii) of
Corollary 1 and Th. 5 iii) then there is a bilipschitz mapping
B such that B(E) = J.

(For a sketch of proof see [2]).

H

5. THE CONVEX HULL OF F. We want to show that @ := co(F) is an
octagon, (see Fig. 3). First observe that if die {0,1} then

2 3
(32) -1 £ Re (d0 + dlb + dzb + d3b ) £ 3.
o .
In consequence, if z = x + iy = S djb J we have
1
- 3 2 ~4k 4
z = kEl(d4k_3b + d4k~2b + d4k—1b + d4k)b Since b™ = -4
it follows that : - 13/15 = - 3/4 - 1/4% - 3/4° - .. < Re z <

< 174 + 3/4% + 1/4% + 3/4% 4

t

7/15. Besides we have

4 3 2

o
z -
+ % (°4k—3b + °4k—2b + c4k_1b + c4k)b

E =(cy* cgb + c,b?rb”
Since cie {0,1}, the second of the following relations holds.
The third and fourth inequalities are easily obtained as the
first ones.

[~ -13/15 £ Re z = x < 7/15

-11/30 = Re z/b = (-x+y)/2 < 7/15

(33) < -11/30 < Re z/b%= -y/2 < 7/15

~11/30 < Re z/b5= (x+y)/4 < 13/60

Therefore, F is contained in the region whose boundary is
defined by the following lines

11: x = 7/15 12 x = -13/15

137y = 11/15 1,0y = -14/15
(34) < I: x+y = 13/15 Ig: xty = -22/15

1,0 x-y = 11/15 Ig: x-y = -14/15

29
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We define : Pij: Pji: 1i n lj'
THEOREH 6. Q@ = co {P17, P15’ 935, 938’ st, PZB’ P46’ P47}.
PROOF. It will suffice to prove that

P17e A Pzae A"

P,.€ C P,.€ C~
(35) < 15 26

P35€ B p48€ B

I PSBG B P47e B~

Since "(Ji) = Ji+1
to prove (35) it will be sufficient to show that the four
relations on the left hold. From (34) we get,

if 1 is odd and H(li) = .Zi_1 if 1 is even,

P..= (7-4i)/15 = (2+11i)/15

17 P35

P15= (7+61)/15 P

(36) <

38~ (-3+111)/15

Next we write the points in (36) in positional notation (ecf.
§ 6 ). Observe that 1/15 = 0.00000001. Also that 7-41 = [-4 3]b:

= 101101. Then P,,.= 0.00101107. From the graph I we get

17

P17= 1.T7170000 € A. In fact, this can be checked following in

I' the seguence

;3 P ! p 9 P :
p|q,p,q,5f—.q|p,q,p,cﬂ‘,p!q,

Since 7+81i = [6 13] = 1101001, we get, as before, the equalities

Pie= 0.011071001 = 1110.10000111 € C.

Analogously, P35= 0.01001011 = 11.001111I00 € B,

Psg= 0.0101101I0 = 11.77100001 € B, QED.

5.1. FIXED POINTS AND THE VERTICES OF Q. Because of (21) the
radix representation of a point in the right column of (35) is
obtained from the representation of the point at its left
changing zeros by ones and conversely. Then, as next Lemma
shows, any extremal point of @ is the fixed point of a

composition of four similarities QU and four Ql. In this regard
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cf. [12].
LENMMA 8. A periedic point Q@ = 0'°1"‘°H such that the cipher
c;= 1 for i= i,,...,i, where 15y < iy,, <M, c;=0 otherwise,

is the fixed point of the similarity

(37) o := @él‘l o2, o@éz'il“l o ... o@éu’ln—l'l ol otg‘lu
PROCF. In fact, )
(38) a(z) = LI (b"x ¢+ ... + b 1wy,

Then, a(z) = z if and only if z = Q, QED.

6. THE SET A AND ITS CONMVEX HULL. In Fig. 5 one observes the

construction of the attractor A, starting from the segment

[x,vy], using the similarities Ti, iz 0, 1, 2 (cfr. Prop. 5).
n

DEFINITIOR. We say that a selfsimilar set K = U Qi(K)

1
has the property 4, or shortly K € A, if there exists a > O

such that for each X € K and each r < o there are a point Y € K
and a similarity o of ratio one such that
i oC K N Br(X)) = KN Br(Y)

ii) E}EYS intersects only one of the sets Qi(K).

THEOREM 7. A € 4.
PROOF. We have cobserved in the proof of Proposition & that the
arc fF([0,1/8+1/27)) that joins x with x° in Fig. 5 and the
arc f([1/3-1/9,1/3+1/27)) that joins z with z are traslates
one of the other. Define 28 =
= inf {dist (£(1/8), A\ f([1/8+1/27,1]1) ,

dist (£(1/3), A\ £([1/3-1/8,1/3+1/271)).
Now if [X-f(1/3)}< & we define o(w) = w + £(1/8) - £(1/3).
Similarly if |X-£(2/3)| = |S(X)-f(1/3)| < & we define o(w) =
= S(wy+ £(1/9) - £(1/3). In any other case o(w)= w. It is clear
that 1) holds for r < &.
Now, if a is small enough 1i) also holds. QED.
6.1. A CLOSED CONVEX SET H THAT CORTAIBS A. Observing the graph
I' it is clear that A = F0 n F1 z FD.O n Fl.l' In consequence

co(A) ¢ co( F 0) N cof F1 1) =: H. Now 2 = x + iy € F

0 0.0
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fFC1/9) %
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iff bz = -(x+y) + i(x-y) € FO.

(37) [ -13/15 £ -x-y <

iff 2z € co( FO.O)'

7/15
-14/15 £ x-y £ 11/15

From (33) we get,

~22/15 £ -2y < 13/15
-11/15 = 2x = 14/15

Analogously z € F1 1 iff bz - i = -(x+y) +

+i(x~-y-1) € F0 . S0 z € co( Fl.l) iff

1A

-14/15
(38)
-13/15 £ -x~y <

Combinig (37) and (38) we have:

1/15 <
(39) -13/30
2/15 =

A X
-

x-y-1 <

<
<

<

11/15
7/15

11/15
7/30
7/15

-22/15 £ -2y-1 < 13/15
-11/15 = 2x-1 = 14/15

x+iy € H iff

The region H, defined thus by (39), is a hexagon with vertices
T, Q, L, T, @° and L°, and center P (see Fig. 4), where

9+7i

@=—3p— - T=715—

(40> 9-13i

Q’ S(Q) = 30

, T'= S(T) = 5= - L'=8(L) =

CLAIM: Q, T, Q@ ,T " belong to A.
Since S(A) = A it is enough to show that Q, T € A. To get the
gaussian representation of @ we write Q= (7-81).(i/2).(1/15) =

H]

I

1.1701701I00 € A. Analogously, T

L = 14+71
’ = 30—

(110000110)b.(0.01)b.(0.UﬁUUUﬁUT)b = 0.071000017 =

= (2 4+ 1)(1/15) =

(1111)(0.0000000T) belongs to A since T =

= 0.00001117 = 1.7101I0010, and the claim is proved.
6.2. THE CONVEX HULL OF A. By the previous result Q, T, Q° and

T® are extremal points of
extremal points of co(A),

- # _
F:=F) 11011010 » F :=

The graph I' yields that A

co(A).

T

o determine the remaining

consider the sets

FO.OU

c F_UF
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and F'= Fg 44400

UF®. In fact, if z € A and



z € F” U F® then z € F0_0110110. But other representation of

2 is 1.1101101... and z € F . Since 11101101 = -(1+4i)

the extremal points of co(F ) are (cfr. Theorem 6) :

(42) ( P.. + (-1-4i)) b '= ( Pyy -1-41)(1-1)/18 =: P,

ij
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We have: 917 - 9553 = Q (cfr. (40)) . Other two are
= 2334141 _ - 974511 _
(43) Pyq= —gg— = R Pae™ 7305 =V

The radix representations of these numbers sare

(44) < R = 1.110110TI0T00 = 0.0110TI00001IT
U 1.1101101T0710100 = 0.0110110TT00001T

(To obtain these expresions write R=(-18-74i)b /(1/15)

U = (—23—74i)b—7(1/15) and use the fact that 1/15 = 0.00000001 )
Therefore R and U belong to A, as well as Q.

Analogously the extremal points of co(F“) are

$ -2 .
(45)  PU o= Byoib O= (Py )(i/2)
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In particular, P“ZS: (8-13i)/30 = Q" , P#64 = (14-81)/30 = T",
“ - v - »
(486) P47 = (14-3i)/30 =: X’.
The radix representations of these numbers are:
Q" = S(@) = 0.001001011 = 1.100117100
(47) <« T = $(T) = 0.001011010 = 1.1711000071
X = 0.00T0710010T = 1.1100011710

Therefore, X' € A just as @° and T’ .
Finally the extremal points of co(Fz) are

s -5 _ .
(48) P i5°° ( Pij+ 2 )b = ( Pij+ 2 )(i+1i)/8.

For the sake of completeness we write down the extremal points

of the convex hulls of FO’ F”, F~ and F~

P ,=(7-41)/15 P, =(7+61)/15 Pye=(2+113)/15
Pyg=(~3+111)/15 Pg=((~13+1)/15 Pg=(-13-91)/15
P,g=(-8-141)/15 P,,=(-3-141)/15
p¥ - (4+71)/30 ¥ -(-6+71)/30 p_ ¥o(-1142i)/30
17 15 35
p¥ —(-11-3i)/30 p¥ -(-1-131)/30 p¥ -(9-13i)/30
38 28 26
. . B
Ph=(14-81)/30 P}, =(14-31)/30
P, ,=(72+561)/240 PLs=(62+461)/240 P, =(62+361)/240
Pog=(87+311)/240 P,g=(87+311)/240  P,5(97+411)/240
P,=(97+511)/240 P, ,=(82+561)/240
P, =(41+331)/120 PY =(31+48i)/120 P =(21+431)/120
P} g=(16+381)/120 PSg=(16+181)/120  Pj;=(26+81)/120
P} 5= (36+81)/120 P}, =(41+131)/120
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We have,
(48)

(50)

These facts are illustrated in Fig.
the left of the line through X’ and U,

From Ac H N { co(F ) U co(F¥) U co(F°)}, we obtain
Aceco(L’, @, T, X°

Re (P iJ.) < Re (P

Re X° +

we have moreover that

(51)
where X

A c co (U, R’
5(X°) , U=
Since all the points in the bracket in (51) belong
(42) and (44) ), we have proved

Im X' =

i

<

7.

» U, R, @, T ).

» @7, T
S(U), R’

THEOREM 8. ~ = co (A).

u,
S(R).

41/120 < Re (R),

In consequence,

(see also Fig.

R, @, T, XD

37/60 = Re U + Im U.

A lies to

B).

that
Because of A = S(A),

to A (cfr.

7. APPENDIX. Next table contains the radix representation in

Gauss’ base of the complex numbers (a,c) := a + ic of modulus

less than or equal to 4.

|

i
O O
A W WA

i

i
COQOF I b = RN NN NN GWWWW W

L T T U VR VO

N R R

|
s 1N

FON NSNS N NN SN SN NI I TN N PN N PN PN PN S N N
{
S r?

Powers of b

! | I
WWNF QR NWN
S A A NP
it

_2):

H

| i

B GO BN bt O s

SN S N N N’ N
1

|
[SV]
~
"nu

10000
10101
11101010
10001
11110
1110100101
11101111
11101000
11101011
11100
11111
11000
11011
110010
11101001
110
11101

10

11001
1110110
110000
110011
100

111

3

: b= 2421,

TABLE 1.

4

ONFOMFNWNEOEDNWWRN K O M N WB WK -
A T T T WA T WL W W A W NPT N N N N N N W NP W N S N

FON SN NN SN ST SN ST TN N N SN PN N SN SN PN PN PN N TN AN NS N

CNN v v % v % % & % 8 ¥ % v WM OV M oW WM oW oUW wW M oW W o ow

o BDWWWWWNNNNNNN s = OO0 00

b'= -4,

w
V<]

L O I O T T 1 T Y O VIO F A

11
1110100
1110111
1110000

111110
101
111010

1

1110
1110101
1010
111111
111000
111011
1100

1111

1000

1011
111001
111010110
1101
111010010
1001
111010000

8 7

4-4i, b= 8i, b =

-8-8i,



b8= 1i6. The radix representation is usually written betwsen

parentheses, for example : -1 = (11101), (1 + 1i)/4 = (0.011),
(1 - i)/4 = = (0.001) or if one wishes to indicate the base b =

= -1+ :1/2 = (1.11), ; 3b° = (1101000)_,,,. Sometimes it is

convenient to use brackets : 3b3: [{3000] ; this means that
instead of & legitimate cipher O or 1 there is an integer, not
necessarily a binary digit, which is the coefficient of the
corresponding power of b. For example : 0 = [122] =

b2 + 2b + 2 = [1220] = bS + 262 + 26 + 0 ; 0 = -1 + 1 =

(11101) + (1) = [11102]. In general, we drop the parentheses.
In numbers like (1 - 2i)/5 = 0.001, the vinculum means that the
numbers that are covered repeat periodically. The reader is

]

referred to [B] for a method to perform elementary operations in
positional notation.

REFERENCES .

{1] Edgar G.A., Heasure, Topology and Fractal Geometry, Springer
(1880).

[2] Falconer K., Fractal Geometry, J. Wiley & Sons, (1880).

[3] Falconer K.J., The Geometry of Fractal Sets, Cambridge,
(1985).

[4] Gilbert ¥.J., Fractal geometry derived from complex bases,
The Hath. Intelligencer, 4 (1882),78-86.

[5] Gilbert W.J., Complex numbers with three radix expangions,
Can. J. Math., XXXIV (1882) 1335-48.

[6] Gilbert ¥W.J., Arithmetic in complex bases, Math. MHagazine,
57 (1884) 77-81.

[7] Gilbert ¥W.J., The fractal dimension of sets derived from
complex bases, Can. Math. Bull., 28(1886) 485-500.

[8] Gilbert ¥W.J., Complex bases and fractal similarity, Ann. Sc.
Hath., 11 (1887) 865-77.

[9] Ito S., On the fractal curves induced from the complex radix
expansion, Tokio J. Math., 12 (1888) 289-320.

{i0] Kétai J. and Szabé J., Canonical number systems for complex
integers, Acta Sci. Math.(Szeged) 37 (1875) 255-860.

[11] Lehto 0., Univalent Functions and Teichmiiller Spaces,
Springer (1886).

{i2] Panzone P.A., A note on the convex hull of selfsimilar
sets, (1883), this volunme.

[13] Benedek A. and Panzone R., Representacién de los nimeros
complejos en la base de Gauss, Centro Latinoameri-
cano de Matem. e Informdtica, 17 (1882), 5-26.

PDepertamnento and Instituto de Heteomdtica,
Universidad Naciocnal del Sur, Bahie Blance., Argentine.

40



