A NOTE ON THE CONVEX HULL OF SELF-SIMILAR SETS

Pablo A. Panzone

ABSTRACT: We show sufficient conditions for the convex hull of a self-similar set to be a polyhedron (theorem 1), and we exhibit an example showing that these conditions are in a certain sense optimal (example 1). In theorem 3 we investigate the boundary of a (general) self-similar set in \mathbb{R}^2 .

Let A be a subset of R^n ; $\mathcal{C}(A)$ will denote its convex hull. Let $Y_i: R^n \longrightarrow R^n$, $i=1,\ldots,L$, be mappings such that

(0)
$$Y_{i}(x) = c_{i}A_{i}x + \alpha_{i}$$

where c_i is a real number such that $0 < c_i < 1$, α_i is a vector in R^n and A_i is a (real) ortogonal matrix with determinant one, i.e., $A_i \in 0_n^*$, the group of rigid rotations in R^n .

By K a self-similar set we will understand the unique compact set K of $\ensuremath{\mathbb{R}}^n$ such that

$$K = \bigcup_{i=1}^{L} Y_{i}(K)$$

By different reasons (see [PA]) it is useful to have a knowledge of the convex hull of a self-similar set K (notice that $\mathcal{C}(K)$ is compact). For $\mathcal{C}(K)$ a polyhedron we will write $\mathcal{C}(K) = \mathcal{C}(\{p_1, \ldots, p_m\})$, where the points p_i , $i=1,\ldots,m$, are a minimal set of generators.

The following theorem states that in certain cases $\mathcal{C}(K)$ is a polyhedron and shows how to calculate the points that generate it.

THEOREM 1. Let K be a self-similar set of \mathbb{R}^n . Then

a) if
$$C(K)$$
 is a polyhedron, i.e., $C(K) = C(\{p_1, \dots, p_m\})$,

then for any j, $1 \le j \le m$, there exist indices i_1, \ldots, i_{k_2} , such that

(1)
$$p_{j} = Y_{i_{1}}(...(Y_{i_{k_{1}}}(q))...) \text{ where}$$

$$q = Y_{i_{k_{1}}+1}(...(Y_{i_{k_{2}}}(q))...) \text{ and}$$

$$1 \leq i_1, \ldots, i_{k_1}, i_{k_1+1}, \ldots, i_{k_2} \leq L$$

$$(k_1 \text{ may be zero }: p_j = q \text{ a fixed point of } Y_{i_1}(\ldots(Y_{i_{k_2}}(\ldots))\ldots).)$$

b) if the subgroup generated by $\{A_i\}$ in 0_n^* is finite of order μ then $\mathcal{C}(K)$ is a polyhedron and is equal to the convex hull of all possible points p_j as in (1) with $1 \le k_2 \le \mu$. PROOF. Observe that, if K is a self-similar set, then by linearity we have

(2)
$$C(K) = C(\bigcup_{i=1}^{L} C(Y_i(K))),$$

$$C(Y_i(K)) = Y_i(C(K))$$

a) if $\mathcal{C}(K)$ is a polyhedron as stated then the points p_j must be extremal points of $\mathcal{C}(K)$: there do not exist points p,q, belonging to $\mathcal{C}(K)$, $p,q \neq p_j$, such that $p_j \in [p,q]$ (see [EGG]). Fix j. Using (2) we have that $p_j \in Y_i(\mathcal{C}(K))$ for some index i_1 . Since $Y_i(\mathcal{C}(K))$ is a polyhedron contained in $\mathcal{C}(K)$ and p_j is an extremal point of $\mathcal{C}(K)$, there exists p_k such that $Y_i(p_k) = p_j$. Repeating this process we obtain a sequence of points such that

$$(3) \qquad \qquad \frac{Y_{i_2}}{y_{k}} \xrightarrow{Y_{i_1}} p_{j_1}$$

But there are only a finite number of points $\mathbf{p}_{\hat{\mathbf{i}}}$. Therefore (3) may be rewritten as

$$\dots \longrightarrow p_r = q \xrightarrow{i_{k_2}} \dots \xrightarrow{i_{k_1+1}} p_r = q \xrightarrow{i_{k_1}} \dots \xrightarrow{y_i} p_i$$
and a) follows.

b) We repeat, up to some point, the argument used in a). Let pobe an extremal point of C(K). By (2) there exists an index i_1 such that $p_0 \in Y_i$ (C(K)). Set $p_1 = Y_i^{-1}(p_0)$. Then p_1 is an extremal point of C(K). Repeat the process with p_1 and so on. Then we have a sequence of **extremal** points such that

$$(4) \qquad \qquad \stackrel{Y_{i_3}}{\cdots} \rightarrow p_2 \xrightarrow{Y_{i_2}} p_1 \xrightarrow{Y_{i_1}} p_0$$

Since the mappings are such that $Y_{i}(x) = c_{i}A_{i}x + \alpha_{i}$, j = 1, ..., L, and the subgroup generated by $\{A_j\}$ is finite of order μ , we have that given the sequence i_1 , i_2 , ..., there exist indices $0 \le k_1 < k_2 \le \mu$ such that

$$A_{i_1}$$
. A_{i_2} $A_{i_{k_1}} = A_{i_1}$. A_{i_2} $A_{i_{k_2}}$, so

$$A_{i_{k_1}+1}$$
 $A_{i_{k_2}} = I = identity matrix.$

Therefore
$$Y_{i_{k_1}+1}(...Y_{i_{k_2}}(x)...) := Y(x) = cx + \alpha$$

where 0 < c < 1 (there is **no** rotation).

Suppose $p_{k_1} \neq p_{k_2}$. Then, since $Y(p_{k_2}) = p_{k_1}$, we have

$$p_{k_1} = p_{k_2} \cdot e/(1+e) + Y(p_{k_1}) \cdot 1/(1+e)$$

This means, $p_{k_1} \in [p_{k_2}, Y(p_{k_1})]$ being $p_{k_1} \neq p_{k_2}, Y(p_{k_1})$.

Therefore p_{k_*} is not an extremal point, a contradiction.

Therefore $p_{k_1} = p_{k_2}$ and we have proved that given an extremal

point p_o there exist indices $0 \le k_1 < k_2 \le \mu$ such that

$$p_o = Y_{i_1}(\dots Y_{i_{k_1}}(q) \dots)$$

$$q = Y_{i_{k_1}+1} (\dots Y_{i_{k_2}} (q) \dots).$$

Consequently the number of extremal points is finite. It is a well-known fact that this means that C(K) is a polyhedron (see [EGG]).

A consequence of theorem 1 b) is that if we have mappings $Y_j(z) : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$, $j=1,\ldots,L$, such that

(5)
$$Y_{j}(z) = c_{j}e^{i2\pi\theta_{j}}z + \alpha_{j}$$

or

(6)
$$Y_{j}(z) = c_{j}e^{i2\pi\theta_{j}} \bar{z} + \alpha_{j}$$

where $0 < c_j < 1$, θ_j is rational and z, α_j , are complex then $\mathcal{C}(K)$ must be a polygon. This fact is proved as follows: if all mappings are as in (5) then theorem 1 b) applies directly. If there is a mapping as in (6) then for each mapping Y_j as in (5), associate a mapping $\tilde{Y}_j : R^3 \longrightarrow R^3$ in the following way (here $\beta_j = 2\pi\theta_j$)

$$\tilde{Y}_{j}((x,y,z)) = c_{j} \begin{vmatrix} \cos \beta_{j} & -\sin \beta_{j} & 0 \\ \sin \beta_{j} & \cos \beta_{j} & 0 \\ 0 & 0 & 1 \end{vmatrix} \begin{vmatrix} x \\ y \\ z \end{vmatrix} + \begin{vmatrix} \operatorname{Re} \alpha_{j} \\ \operatorname{Im} \alpha_{j} \\ 0 \end{vmatrix}$$

and for each Y_j as (6) we associate $\tilde{Y}_j \colon R^3 \longrightarrow R^3$ as

$$\tilde{Y}_{j}((x,y,z)) = c_{j} \begin{vmatrix} \cos \beta_{j} & \sin \beta_{j} & 0 \\ \sin \beta_{j} & -\cos \beta_{j} & 0 \\ 0 & 0 & -1 \end{vmatrix} z + \begin{vmatrix} \operatorname{Re} \alpha_{j} \\ \operatorname{Im} \alpha_{j} \\ 0 \end{vmatrix}$$

Observe that in any case \tilde{Y}_j $((x,y,0)) = Y_j(x+iy)$ and that \tilde{K} , the self-similar set associated with $\{\tilde{Y}_j\}$, is contained in $R^2 = \{(x,y,0)\}$. Therefore $\tilde{K} = K$. But theorem 1 b) applies for \tilde{K} . This finishes the proof.

The following example in \mathbb{R}^2 shows that we should not expect $\mathcal{C}(K)$ be always a polyhedron.

Example 1: Set

$$Y_1(z) = z e^{i2\pi^2/2}$$
, $Y_2(z) = zi/2 + 1 - i/2$

and let K be the self-similar set associated with these mappings. Then

THEOREM 2. C(K) is not a polygon.

PROOF. First observe that for the above mappings we have $Y_1(0) = 0$, $Y_2(1) = 1$. Therefore $0,1 \in K$ (see [FAL]) and therefore $Y_1^i(1)$, $Y_2^i(0) \in K$ for $i = 1,2,\ldots$.

It is not difficult to see that

(7)
$$0 \in \text{int } C \left(\bigcup_{i=1}^{\infty} \left\{ Y_{1}^{i}(1) \right\} \right) \subset \text{int } C \left(\mathbb{K} \right)$$

$$1 \in \text{int } C \left(\begin{array}{c} \infty \\ 0 \\ i=1 \end{array} \right) \left\{ \begin{array}{c} Y_2^i(0) \end{array} \right\} \subset \text{int } C \left(K \right)$$

Suppose C(K) is a polygon, i.e. $C(K) = C(\{p_1, \ldots, p_m\})$ with p_j ordered clockwise in C(K).

By theorem 1 a) we know that each point p_{j} is obtained as

(8)
$$p_{j} = Y_{i_{1}}(...Y_{i_{k_{1}}}(q)...),$$

$$q = Y_{i_{k_{1}+1}}(...Y_{i_{k_{2}}}(q)...) \text{ and } 1 \le i_{1},...,i_{k_{1}},i_{k_{1}+1},...,i_{k_{2}} \le 2$$

If q is not an extremal point then by (8) p_j is not an extremal point. Thus q is a point p_j for some i, say $q=p_1$, and by (8)

$$p_1 = Y_{i_{k_1}+1}(...(Y_{i_{k_2}}(p_1))...)$$

If $i_{k_1+1}=\ldots=i_{k_2}$ then p_1 would be 0 or 1. By (7) this can not happen. Therefore $k_2-k_1\geq 2$ and there exists at least one index $i_j=1$ with $k_1< j\leq k_2$. Then we must have

$$Y_{i_{k_1}+1}(\dots Y_{i_{k_2}}(z)\dots) := Y(z) = c e^{i2\pi\theta} z + \alpha$$

with 0 < c < 1, θ irrational, α a complex number.

By (2), if we set $T = C(\{p_m, p_1, p_2\})$ then $Y(T) \subset C(K)$. But θ is not 2π times an integer and $Y(p_1) = p_1$. Hence, the triangle $C(\{Y(p_m), Y(p_1), Y(p_2)\})$ is not contained in $C(\{p_m, p_1, p_2\})$ and $Y(p_m) \notin C(K)$ or $Y(p_2) \notin C(K)$, which is absurd.

The following theorem shows that the extremal points of a self-similar set in \mathbb{R}^2 can be divided into two classes.

Let $Y_j(z) = c_j e^{i2\pi\theta_j} z + \alpha_j$, j = 1,...,L, be mappings of R^2 such that $0 < c_j < 1$, α_j complex and θ_j real. Let K be the self-similar set associated with $\{Y_j\}$ and suppose that C(K) is not a polygon.

Let p_o be an extremal point of $\mathcal{C}(K)$ and define $\theta_{p_o}(\mathcal{C}(K)) := \{ \sup \theta \ / \ \theta \text{ is the angle between segments } [p_o,a], [p_o,b], with a,b <math>\in \mathcal{C}(K) \}$. It is clear that $0 < \theta_{p_o}(\mathcal{C}(K)) \le \pi$.

For p_o there are only two possibilities: p_o is locally linear, i.e., there exist points c,d, such that p_o, c, d, are not colinear and [p_o,c],[p_o,d] $\subset \partial C(K)$ (therefore $\theta_{p_o}(C(K))$ = angle between [p_o,c] and [p_o,d]), or p_o is not locally linear.

THEOREM 3. In the above conditions we have

- a) if p_o is not locally linear then $\theta_{p_o}(\mathcal{C}(K)) = \pi$
- b) if po is locally linear then

PROOF. a) Suppose p_o is such that $\theta_{p_o}(\mathcal{C}(K)) \leq \pi - \epsilon$ with ϵ positive and small. As p_o is not locally linear one can find a sequence $p_{o,j}$ such that

I) $p_{\circ,i} \longrightarrow p_{\circ}$; $p_{\circ,p_{\circ,i}}$ are extremal points of $\mathcal{C}(K)$ and $p_{\circ,i} \neq p_{\circ}$ for all i.

Using (2) one can extract a subsequence of p_{0i} such that p_{0i} , $p_{0} \in Y_{j_{1}}(C(K))$ for all k, for some index j_{1} . Set $p_{1} = Y_{j_{1}}^{-1}(p_{0})$, $p_{1k} = Y_{j_{1}}^{-1}(p_{0i})$. Therefore, p_{1} , p_{1k} satisfy condition

I) and $\theta_{p_1}(\mathcal{C}(K)) \leq \theta_{p_0}(\mathcal{C}(K))$. Repeating the process one has

$$\dots \longrightarrow p_2 \xrightarrow{Y_{j_2}} p_1 \xrightarrow{Y_{j_1}} p_{\bullet}$$

where $Y_{j_s}(p_{si})$ for all i is a subsequence of $p_{(s-1)i}$ and all points involved are extremal points. Also

(9)
$$\ldots \leq \theta_{p_1}(C(K)) \leq \theta_{p_0}(C(K)) \leq \pi - \epsilon$$

From (9) one gets $p_{k_1} = p_{k_2}$ for some pair $k_1 = k_2$ (if all p_i were different, take the polygon $\mathcal{C}(\{p_o, \ldots, p_m\})$ whose sum of interior angles, because of (9), would be less than or equal to $\theta_{p_o}(\mathcal{C}(K)) + \ldots + \theta_{p_m}(\mathcal{C}(K)) \leq (m+1) \ (\pi - \epsilon)$. But the sum of the interior angles is $(m+1)\pi - 2\pi$. If m is great enough we get a contradiction).

Therefore

extremal point. This proves a).

Set $Y(x):=Y_{j_{k_1}+1}$ (... $(Y_{j_{k_2}}(x))$...). Then Y(q)=q and we have

 $\theta_q(\mathcal{C}(K)) = \theta_q(Y(\mathcal{C}(K))). \text{ As } Y(\mathcal{C}(K)) \subset \mathcal{C}(K) \text{ the map } Y(\mathbf{x}) \text{ must be a}$ contraction plus a translation (there is **no** rotation).

But $Y(p_{k_21}) = p_{k_1i}$ for some i and therefore $p_{k_1i} \in [q, p_{k_21}]$

being $\mathbf{p}_{\mathbf{k}_{2}1}$ and q different from $\mathbf{p}_{\mathbf{k}_{1}i}$. Therefore $\mathbf{p}_{\mathbf{k}_{1}i}$ is not an

b) By arguments used before one can prove that there is a

sequence of extremal points and mappings such that

As in a) the above conditions give that $p_{k_2} = p_{k_1}$ with $k_1 < k_2$ and b) follows.

REFERENCES

- [EGG] Eggleston H.G., Convexity, Cambridge University Press, (1958).
- [FAL] Falconer K.J., The Geometry of Fractal Sets, Cambridge University Press, (1989).
- [MA] Marion J., Mesure de Hausdorff d'un fractal a similitude interne, Ann. sc. math. Québec, Vol. 10 N° 1, (1986), 51-84.
 - Marion J., Mesure de Hausdorff d'ensembles fractals, Ann. sc. math. Québec, Vol. 11 N° 1, (1987), 111-132.
- [PA] Panzone P.A., On the measure of self-similar sets, Revista de la Unión Matemática Argentina, (1992) (to appear).

Departamento and Instituto de Matemática,

Universidad Nacional del Sur, 8000 Bahía Blenca, Argentina.