A NOTE ON THE CONVEX HULL OF SELF-SIMILAR SETS

Pablo A. Panzone

ABSTRACT: We show sufficient conditions for the convex hull of a
self-similar set to be a polyhedron (theorem 1), and we exhibit
an example showing that these conditions are in a certain sense
optimal (example 1). In theorem 3 we investigate the boundary of
a (general) self-similar set in R®.

Let A be a subset of Rn; C(A) will denote its convex
hull. Let Y. : R"

> Rn, i=1,...,L, be mappings such that

(0) Yi(x) = ciAix +oay

where ¢y is a real number such that 0 < ci < 1, a, is a vector

in Rn and Ai is a (real) ortogonal matrix with determinant one,

i.e., Ai € On , the group of rigid rotations 1in Rn.

By K a self-similar set we will understand the unique
compact set K of Rn such that

L

K= U Y.(K)
. i
1=1

By different reasons (see [PA]) it is useful to have
a knowledge of the convex hull of a self-similar set K (notice
that C(K) is compact). For C(K) a polyhedron we will write
C(K) = C({pl, e pm}), where the points pi, i=z1l,...,m, are 3
minimal set of generators.

The following theorem states that in certain cases
C(K) is a polyhedron and showsvhow to calculate the points that

generate 1it.

THEOREM 1. Let K be a self-similar set of R". Then

a) if C(K) is a polyvhedron, 1i.e., C(K):C({pl,...,pm}),
then for any Jj, 1< j< m, there exist indices il’ e ik .
such that 2
(1) pj = Yi (...(Yi (a) ) ...) where
1 k
1
q = Yi (...(Yi (q) Y ...) and
k1+1 k2
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i, .., i,, i s e s
1 k1 k1+1 2

(k1 nay be zero : p.= q a fixed point of Y. (...(Y, (.))...)0)
J 1 1
1 k2
b) if the subgroup generated by {Ai} in O: is finite of
order p then C(K) is a polyhedron and is equal to the convex

hull of all possible points pj as in (1) with 1 = kz < u

PROOF. Observe that, if K is a self-similar set, then by
linearity we have

(2) C(K) = &(

1i=1

C(Y (K)) = Y, (C(K))

(A=l

COY,(R) D ),

a) if C(K) is a polyhedron as stated then the points pj must
be extremal points of C(K): there do not exist points p.,q,
belonging to C(K), p,q + pj, such that pj € [p,al] (see [EGG]).

Fix j. Using (2) we have that pj € Yi(C(K)) for some index il.

1
Since Yi(C(K)) is a polyhedron contained in C(K) and pj is an
1
extremal point of O(K), there exists Py such that Yi(pk) = pj.

1
Repeating this process we obtain a sequence of points such that

Y. Y,
(3) 2>pk1>pj

But there are only a finite number of points Py - Therefore (3)

may be rewritten as

Yi Yi Yi Yi Y.1
k? k,+1 k 2 1
> Pr: q —> > L. —> pk~—> p'j

and a) follows.
b) We repeat, up to some point, the argument used in a). Let
p. be an extremal point of C(K). By (2) there exists an index '11
such that p, € Y. (C(K)). Set p, = Yfl(po). Then p, is an
i, 1 iy 1
extremal point of C(K). Repeat the process with Py and so on.

Then we have a sequence of extremal points such that
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Y. Yi Yi
3 2 1
> pz > pl > Poe

(4)

3 2

J
J=1,...,L, and the subgroup generated by {Aj} is finite of or-

Since the mappings are such that Yj(x) = chjx + a

der p, we have that given the sequence il, i2’ ... , there exist

indices 0 < k1< k2 < u such that

Ai . Ai A1 = A.1 ; A1 A1 , SO
1 2 k1 1 2 kz
Ai A.l = I = identity matrix.
k1+1 kz
Therefore Y. (...Y. (x) ... Y:= Y(x) = cx + a
i i
k1+1 kz

where 0 < ¢ < 1 (there is no rotation).

Suppose pkl# pk Then, since Y(pk) = pk , Wwe have

2 2 1
pk = pk .e/{1+c) + Y(pk Yy . 1/(1+c)
1 2 1
This means, p, € [p, , Y(p,)] being p # P, , Y(p, ).
ki ks kq k T kg ky
Therefore pk is not an extremal point, a contradiction.
1
Therefore Py = Py and we have proved that given an extremal
1 2
point p, there exist indices 0O = k1 < k2 < u such that
Po = Yi ¢ ... Y.1 a) ... )
1 k
1
q = Y. ¢ ... Y. (q) ... ).
i i
k1+1 kz

Consequently the number of extremal points is finite. It is a
well-known fact that this means that C(K) is a polyhedron
(see [EGG1). @

A consequence of theorem 1 b) is that if we have

2 > R%, 3=1,...,L, such that

iZnGj
(5) Yj(z) = cje z + aj

nappings Yj(z) : R
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or
i2n6j _
(6) Yj(z) = cje z + aj

where 0 < cj <1, Oj is rational and z, aj, are complex then

C(K) must be a polygon. This fact is proved as follows: if all
mappings are as in (5) then theorem 1 b) applies directly. If
there is a mapping as in (6) then for each mapping Yj as in (95),

associate a mapping Yj: RB———> R3 in the following way
(here Bj: Znej)
. c?s Bj -sin Bj 0 X Re aj
Yj((x,y,z)) = cy sin Bj cos Bj 0 v | + |Im aj
0 0 1 z 0
and for each Yj as (B) we associate Yj: R3 > R3 as
cos Bj sin Bj 0 X Re aj
Yj ((x,y,2)) = cj sin Bj -coSs Bj 0 y + {Im aj
0 0 -1 z 0

Observe that in any case Yj ((x,y,0)) = Yj(x+iy) and that K,
~ 2
the self-similar set associated with {Yj}’ is contained in R =

= {(x,y,0)}. Therefore K = K. But theorem 1 b) applies for K.

This finishes the proof.

The following example in RZ shows that we should not
expect C(K) be always a polyhedron.
Example 1: Set
i2m?
/2

Yl(z) = z e , Yz(z) = zi/2 + 1 - 1/2

and let K be the self-similar set associated with these

mappings. Then
THEOREM 2. C(K) is not a polygon.

PROOF. First observe that for the above mappings we have Y1(0)=
= 0, Y2(1) = 1. Therefore 0,1 € K (see [FAL]) and therefore

Yi(l), Y%(O) € K for i = 1,2,...
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It is not difficult to see that

w .
&) 0€int C (U { Yi(l) } ) ¢ int € (K)
i=1

[ .
1 e€int C (U { Y;(O) } ) € int € (K)
i=1

Suppose (C(K) is a polygon, i.e. C(K) = CT{pl, s pm})
with pj ordered clockwise in C(K).

By theorem 1 a) we know that each point pj is obtained as

(8) pj:Yi("'Yi a)...) ,
1 kl
q = Y. (...Y. (g)...) and 1=i,,...,1, ,1i e a .1, =2
1k1+1 1kz 1 k1 k1+1 kz

If 9 is not an extremal point then by (8) p.j is not an extremal

point. Thus qQ 1s a point pi for some i, say q:p1 , and by (8)

Py = Y. (...(Y. (pl))...)

1 2
If 1k1+1: ... = 1k2 then p1 would be 0 or 1. By (7) this can not
happen. Therefore k2 - kl z 2 and there exists at least one
index ij = 1 with kl < j = kz. Then we must have
Y. (... Y. (z) ... ) :=Y¥(z) = c e , 4 4
i i
k1+1 k2

with 0 < ¢ < 1, 8 irrational, a a complex number.

By (2), if we set T = C ({pm,pl,pz}) then Y(T) c
C(K). But 8 is not 2n times an integer and Y(pl) = Pq- Hence,
the triangle C({ Y(pm),Y(pl),Y(pz)}) is not contained in

C({pm,pl,pz}) and Y(pm)ﬁ C(K) or Y(pz)ﬁ C(K), which is absurd. .

The following theorem shows that the extremal points

of a self-similar set in R2 can be divided into two classes.
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iZnB.
Let Yj(z) = cje z + aj, j=1,...,L, be mappings

of R2 such that 0«< °j< 1, aj complex and Gj real. Let K be the

self-similar set associated with {Yj} and suppose that C(K) is
not a polygon.
Let p, be an extremal point of C(K) and define

Op (C(K)) := { sup 8 / © is the angle between segments [p.,a],

[(P.,bl, with a,b € C(K) }. It is clear that O <« Gp (C(K)) £ =w.

o

For p, there are only two possibilities
P, is locally linear, i.e., there exist points c,d, such that
Po, C, d, are not colinear and [p,,c],[pP.,d] c© aC(K) (therefore

Bp (C(K)) = angle between [p.,c] and [p..,d]),

or p, 1is not locally linear.

THEOREM 3. In the above conditions we have
a) if p, 1s not locally linear then Bp (C(KY) =«
b) if p, is locally linear then

Po = Yi (...(Yi (@) ) ...) where
1 kl
qQ = Yi (...(Yi (@) ) ... ) and
k1+1 kz
1 =1, , 1., 1 , 1 < L
1 k1 k1+1 kz

PROOF. a) Suppose p, is such that Gp (C(K)) = nm - € with ¢

positive and small. As p, is not locally linear one can find a

sequence po such that

1) poi———> Po; Po,Po.; are extremal points of C(K) and

p°i+ p, for all i.
Using (2) one can extract a subsequence of Poy such

that Pojs Po € Y. (C(K)) for all k, for some index jl' Set
k J1

R | R | . L.
Py = le(po), Py~ le(poia. Therefore, Pys Pk satisfy condition
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I) and Gp(C(K)) < ep(C(K)). Repeating the process one has
1 [<]

Yj Yj
2 1
—> P, —> P;—> Ps
where Yjs(psi) for all i is a subsequence of p(s—l)i and all

points involved are extremal points. Also

(9 R < (C(K)) = Gp(C(K)) £ n - €

8
Py
From (89) one gets pk1: pkz for some pair k1= kz (if all Py
were different, take the polygon C({p., ... ,pm}) whose sum of

interior angles, because of (89), would be less than or equal to

Bp (C(KY) + ... + Gp(C(K)) < (m+l1) (m - €). But the sum of the
° m
interior angles is (m+1)m - 2n. If m is great enough we get a

contradiction).

Therefore
Yj Yj Yj
k2 kl 1
> p.=q > >p, =q > ... —> pP,—> P,
kz k1 1
Set Y(x):= Y. C ... (Y. (x> ... ). Then Y(q)=q and we have
J J
k1+1 kz

Oq(C(K)) = Bq(Y(C(K))). As Y(C(K)) ¢ C(K) the map Y(x) must be

contraction plus a translation (there is no rotation).

But Y(pkzl) " Pryi

being Py 1 and q different from Py
2

for some 1 and therefore pk ie [q,pk 1]
1 2

1i Therefore pkli is not an
extremal point. This proves a).
b) By arguments used before one can prove that there is a
sequence of extremal points and mappings such that
Yj Yj
2 1

—> p, —> p;—> P, and ... S Bpl(CTK)) s epo(C(K)) £ n-¢€
As in a) the above conditions give that ka: pklwith k1< kz and
b) follows. .
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