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The Geometry of the Euclidean Hamiltonian
Trajectories on /1 Points

Blanca I. Niel

Abstract
The Euclidean Hamiltonian Trajectory Problem may be expressed by means of
an n— element vector p, with p; € {1,---,n}. The points are originally presented

as an ordered list of Cartesian coordinates at C an n x 2 matrix, in which Cj; is the
z— coordinate of the point j, and Cj; is the y— coordinate of the same point. We
choose Cj; = cos(%i#) , Cjp = sin(%j,—;lﬂ) and j =1,2,-.-,n. We must also
enforce p; #p;, 4,5 € {l,.--,n} i+ jif all the points in the original list should
belong to the final trajectory. The reordering may be achieved directly by means
of an n x n permutation matrix V(B) defined by [V(B)];; = 1 if p; = j, otherwise
[V(P)lij = 0. Consequently, V(B) C contains the same point coordinates as C
but reordered in the manner defined by 7. Let D be the n x n matrix of negated
interpoint distances given by D;; = —(euclidean distance between points i and 7)
and let Q be the n X n matrix given by Qij = 8;_1; + 8415 4,5 € {1,+--,n} here
b;; is the Kronecker tensor. Then the trajectory length corresponding to ordering
p is reached out in d(p) = —%trace[V(ﬁ)DV(ﬁ)TQ]. ‘

We pose four hamiltonian trajectory paradigms on a network built with ¥/T

points as nodes, weighted by the euclidean distance amongst the nodes and an
architecture of a complete graph K, :
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34 BLANCA I. NIEL

We overcome these paradigms looking at the inherent geometrical core of the
particular set of points that we deal with. Our contribution provide entire answers
that could be utilized to validate the approximation techniques implemented in
order to render suboptimal solutions of these benchmark problems.

Namely, is easy to demonstrate that the minimum strategy criteria have the same
responses. Precisely, the regular configurational shape that realize the optimal are
the piecemeal lines conforming the perimeter of the n—polygons on the ¥1 points.
Another easy task is to find the minimum and maximum bounds for the problerns.
Worthy to notice is that maximum strategy criteria go aside when even or odd
number of nodes are considered. At the odd node instances these strategies are
baited for the lure of the perfect shape, since the optimal configurations are attained
by the piecemeal lines of the odd n-star polygons of maximum density. While even
nodes cases the optimal configuration shapes look less regular. By the way, there
are structural differences between the representative configurations of each distinct
valuated even-maximum strategies.

1 Introduction

We fairly solve an Euclidean Hamiltonian Cycle Problem on the n points of the nth roots
of 1, these n points represent the roots of the cyclotomic equation 2" =1 n € NU{0}
and straightforward computed by the Moivre’s Theorem. We obtain the vertices of a
regular n-polygon, inscribed in the circle |z| = 1. The architecture of the network, af-
ter the number of nodes n has been established, conforms a complete graph K,, i.e.,
its whole linkage between nodes has (’2‘) connections and it is regular of degree n — 1.
The internode weights of the network is the euclidean distance between the n points of
the ni"-roots of 1. We querying about the hamiltonian cyclic configurations which reach
out the minimum global, the maximum global, the nearest neighbor sequential minirnum
(greediest step by step strategy) and the farthest neighbor sequential maximum (clumsiest
step by step strategy) on the complete strongly connected K., directed graph architecture
of the symmetrical euclidean weighted network. We must then find a optimum-weight
hamiltonian cycle in the resultant network. This problem is certainly N'P-complete [1],
because if all the edge weights are made to equal one, the problem reduces to the N'P-
complete problem of finds out all the hamiltonian cycles in a K, graph. Sometimes the
overridden concern is minimizing total cost or travel time rather than distance. In an
euclidean distance weighted and strongly connected graph there exist nodes s and ¢ on
distinct graph geodesics passing through v and v nodes where the triangle inequality
d(s,t) < d(s,v) + d(v,t) holds on. In the brachistochrone instances, the triangle inequal-
ity rarely holds on. Our euclidean hamiltonian global optimum criteria involve tougher

fiheoret)ical and computational tasks since the network with its K, graph architecture has
n—1)!

hamiltonian cycles [2]. Even for moderate number of nodes n, checking all such

cycles would be ludricrous as we had experienced in simulations ! performed in 1998 [3].

1Processing Times with a Pentium 133 Mhz, 32 R.A.M. Mbytes, Linux Operative System,
and C + + software programming language

1) 10 nodes, 2 seconds.
2) 11 nodes, 15 seconds.

3) 13 nodes, 5.38 minutes.
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THE GEOMETRY OF THE EUCLIDEAN HAMILTONIAN TRAJECTORIES 35

Thus other approaches are called for, known as approximation techniques. A common
approximation methods use a local greedy algorithmic approach. This method produces
early savings in edge weights, but could be far from optimal when the cycle is formed. An
outcome of the greedy and clumsy techniques (which are known as the nearest and far-
thest neighbor method) requires beforehand the knowledge of the lower and upper bounds
of the problem in order to conclude if the suboptimal found is reasonably close to the
true optimal. Consequently, we find both required bounds. Then we set apart the trivial
networks with three and four nodes, and subsequently we tidily resolve the paradigms for
any arbitrary number of nodes.

In this paper, we use the geometric structure inherent of the n points of the n**-roots of
1 to shed a new light on the relationship between euclidean geometry of polygons, digons
and stargons and four distinct strategies involving the search of euclidean hamiltonian
cyclic trajectories on the n points of the {/1. Firstly, we explain the theoretica) context
of the problem. Secondly, in Section 2 we introduce the notation relevant to the rest of
the paper and we formulate mathematically the subject of our concern. In Section 3 we
review the mathematics background of n-regular polygons and n-star regular polygons,
all geometric shapes that should be distinguishable in terms of if the number of vertices
are even, odd primes and odd not primes. In Section 4 we describe the architecture of
the network in the context of graph theory. We also identify the circulant graphs as
those that will be adequated to show the active nodes for some optimal configurations. In
Section 5 we expose the core of our results. In Section 6 we detail collateral derivations
to the central material of this research in order to bring about an application from the
perspective of light ray propagation time on the quasi-spherical mirrors as well as some
ancillary information of the reflection law behavior at the spherical mirror. Finally, we
presents the general conclusions.

2 Euclidean Hamiltonian Trajectory Problem For-
mulation

The Euclidean Hamiltonian Trajectory Problem may be expressed by means of an n—
element vector p, with p; € {1,---,n}. The points are originally presented as an ordered
list of Cartesian coordinates at C an n x 2 matrix, in which Cj1 is the z— coordinate of
the point j, and Cj, is the y— coordinate of the same point. We choose

2(4 — 2(7 —
Cij = cos(—(—‘?—n—l)—z) , Cjo = sin(—Q—Tl—)—W- and 7=1,2,---,n. (1)

We must also enforce
pi#pj’ i,jE{l,"',n} 275.7
if all the points in the original list should belong to the final trajectory. The reordering
may be achieved directly by means of an n x n permutation matrix V() [4, 5] defined
4) 13 nodes, 69.68 minutes.
5) 14 nodes, 971.32 minutes.
6) 15 nodes, 9266 minutes, 6.43 days.

7) 60 nodes, the required processing time would be 1052 millions of years.
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36 BLANCA I. NIEL

by
o JL, ifp=j
[V(B))i; = {0, otherwise. ‘ ®)
Consequently,
C =V@C

C' contains the same point coordinates as C but reordered in the manner defined by p.
The components of V() are all ones or zeros, an each row and column contains only a
single one. Expressed mathematically and neatly

V(p)=R"V(p)R" + S

here o"
RP=T"-—
n

s=2

n

with I" be the n x n identity matrix and O™ be the n x n matrix of ones.
Let D be the n X n matrix of negated interpoint distances given by

D;; = —(euclidean distance between points ¢ and 7)
and let Q be the n X n matrix given by
Qij = 8j—1; + 6414 1,5 € {1,---,n}
here §;; is the Kronecker tensor [6]
b = { 1, ifi=j
e 0, ifi#j.

Then the trajectory length corresponding to ordering p is reached out in
- 1 _ _,
d(p) = ~ trace[ V(D V(E)" Q. (3)

We pose four hamiltonian trajectory paradigms on a network [7, 8] built with /1 points
as nodes, weighted by the euclidean distance amongst the nodes and an architecture of &
complete graph K, :

i)
min d(B) (4)

it)
1 : _ _
min o > min Z Dy Vii (Vi (B) + Vieia(P)) (5)
P 453 kAl
At the previous equation we were assuming that p are hamiltonian cycle trajectories.
The above equation is the Lyapunov function associated to the network is built by

adding up the followings terms for every pair of distinct points I, k& whenever both
Actas del VI Congreso Dr. A. A. R. Monteiro, 2001



THE GEOMETRY OF THE EUCLIDEAN HAMILTONIAN TRAJECTORIES 37

points are adjacent in a candidate cycle, i.e., when Vii=1and Vi;y; =1 for any i.
Since each node output value is either 0 or 1 we obtain

Z Dy Vig Vi1 + Vii-1)

i=1

The factor % chops the ambiguity from direct and opposite cycle reckoning.
iii)

mex d(p) (6)

Z aXZle Vii Viir1(B) + Viio1(P)) (7)

=1 1 k£l

wlr—'

The equations (5)and (7) had been built with the entries of V(§)' [9, 10, 11]. We
employ periodic boundary conditions, so that the top and bottom elements in a column
are regarded as neighbors, as are the leftmost and rightmost elements in a row. We choose
boolean binary nodes Vj; to represent if and only if the point [ is the " stop on the cycle.
There are n? node outputs in all. Note that there are 2n equivalent formal solutions for
each optimal cycle, since we do not care where we start the cycle or which direction we go
around it. However, the network represents these possibilities by different configurations.
One point can be clamped (e.g., so city 1 is always at stop 1) if it is desired to break this
degeneracy.

3 Geometry

3.1 Regular Polygons

Rotations about a fixed point O through angles 6, 2, 34, --- transform any point Py
(distinct from O) into other points P, P, Ps, - - - on the circle with center O and radius
OPFy. In general these points become increasingly dense on the circle; but if the 6 is
commensurable with a right angle, only a finite number of them will be distinct. In
particular, if § = —277", where n is a positive integer greater than 2, then there will be
n points P, whose successive joins PoPy, P\P,,- -, P,_1 Py are the sides of an ordinary
regular n-polygon.

For brevity’s sake we assume OF, = 1, P, = (1,0) and the P, points are obtained by the
Moivre’s Formula applied to solve the equation for z € C

z"=1
Ar 2 A k
= /|l (cos M) i Sin(,ﬂi"#_f_)) k=01, n—1.
The previous considerations let it be

V1= {‘/l_lT(COS(OJrnZkW) +i sin(0+n2k7r)) k=0,1,---,n—1 (8)

Actas del VI Congreso Dr. A A. R. Monteiro, 2001
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3.2 Star Polygons

Let us now extend this notion by allowing n to be any rational number greater than 2,
say the fraction & (where p and d are coprime). Accordingly, we define a (generalized)
regular polygon {n}, where n = &. Its p vertices are derived from F, by repeated rotations
through 2%, and its p sides (enclosing the center d times) are

RP, PP, -, P R

Since a ray coming out from the center without passing through a vertex will cross d
of the p sides, this denominator d is called the density of the polygon. When d = 1,
so that n = p, we have the ordinary regular p-polygon {p}. When d > 1, the sides
cross one another, but the crossing points are not counted as vertices. Since d may be
any positive integer relatively prime to p and less than §, there is a regular polygon
{n} for each rational number n > 2. In fact, it is occasxonally desired to include also
the digon {2}, although its two sides coincide. When p = 5, we have the pentagon {5}
of density 1 and the pentagram { }, which was the Pythagorean symbol of good health.

{Decagon ) (Stargen  (10/2))

Rentagn Pythagerean 3 good health

Q % (Stargon = (1073)) {Stargon. (10/4)) (Digen = Star (10/9)
Figure 3.2a . /
Figure 3.2b
Fermet Prine 17 stamgn (17/2) stargm (17/3)
gtargm (17/5) staxgn  (17/6)

seargn (1513) N (3) stagm «15/5) ogn (3)  stacgm (15/6) sEtargn (5/2)
Flgure 3.2¢

Figure 3.2d
Figure 3.2c shows all of the stargons corresponding to the odd number 15 and Figure 3.2d

sketch all of the regular star polygons of the Fermat’s prime number 17. Polygon for
Actas del VI Congreso Dr. A. A. R. Monteiro, 2001
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which d > 1 are known as star polygons [12].

Let D, be the symmetry group of the regular n-polygon, {n}, this group of order 2n
consists of n rotations and n reflections through the n effectively distinct multiples of 2;"
A practical way to make a model of D, is to join two ordinary mirrors by a hinge and
stand them on the lines OP; and OPMP,. - with P, and P,i; a vertex and its next or

foregoing midpoint on a regular n-gon, respectively. Therefore both mirrors are inclined
at Z.
n

3.2.1 n— odd Geometry

From the general dihedral group D,, when n is odd, each of the n mirrors (n reflections,
n rotations of 2;?‘ multiples) joins a vertex of an n-regular polygon to the midpoint of the
opposite side.

3.2.2 n— even Geometry

From the general dihedral group D,, when n is even, 7 mirrors join pairs of opposite
vertices and 7 bisect pairs of opposite sides.

3.3 The Principle of Least Time

The following are the important facts of ray optics well known in Fermat’s lifetime [13]:
i) light travels in straight lines in uniform media,

ii) light reflects from mirror like a billiard ball bouncing from a pool table bumper
(Figure 3.3a),

iii) when passing from a less dense material (e.g., air) into a more dense material (e.g.,
water) light rays incline (i.e., refract) toward the interface normal (Figure 3.3b),
and

iv) light ray are reversible, that is, light can propagate in either direction along the
same path.

~ According to Fermat’s Principle of Least Time, light propagates between two points in
such a way as to minimize its travel time (brachistochrones). Descarte’s followers were
quick to point out a difficulty with the Principle of Least Time, because the light reflec-
tion law is sometimes consistent with the greatest rather than the least propagation time
(e.g., spherical mirror).

Actas del VI Congreso Dr. A. A. R. Monteiro, 2001
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law of Refraction

mterial 1

ML orm medim

N ial 2
N
N
Figure 3.3a AN
Figure 3.3b

4 Network Architecture

4.1 Circulant Graphs

The networks have the architecture of éomplete graphs K., with (3) (ie., @) edges
and are regular of degree n — 1, because feedbacks are not allowed. Inside these max-
imum connectivity graphs we sift out the circulant graphs and more properly circulant
- digraphs [14] since its play an important role in the connections of optimal trajectories. Let

n1,n9,*, N, be a sequence on positive integers where 0 < ny < ny < --- < ny < gﬁ}u .
Then the circulant graph Cn(ny,na, - - -, ng) is the graph on n nodes vy, vy, - « -, v, With ver-

tex v; adjacent to each vertex v;i, ; (mod n)- The values n; are called jump sizes. Now the
corresponding directed circulant is defined similarly, except that adjacent with is replaced
by adjacent to.

5 Euclidean Hamiltonian Trajectory Resolution

5.1 Two particularly simple cases n =3, n=4

The simplest case, K3 is the equilateral triangle (Figure 5.1a). Its inherent geometry does
not shed new light on the general instances. A unique answer to the distinct strategies
Diin = Dye = Doy = D_o = 3v/3 = 5.19615. .

The set of points v/1 with associated K,’s architecture network and synaptic tensor given
by the euclidean distances amongst the nodes bring about a twilight over the complete
landscape of the generalized weighted network of our aim. This special case only distin-
guishes network’s performance between minimum and maximum criteria (Figure 5.1b).
Greediest strategy and global minimum are the same Dyin = Dye = 4% /2 . On the
contrary, clumsiest strategy and global maximum are the same Dy, = D_, = 2%2+2%/2.

Actas del VI Congreso Dr. A. A. R. Monteiro, 2001
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St of Foimts 1 Net Architechre K

faes oo
O (o Ot o D < Dot Duin =Dvg =4»y2 ex =D-g =2:2+2xy2

Figure 5.1a
Figure 5.1b

Nevertheless, these special instances do not bring about the understanding of our goal.

5.2 Hamiltonian Path Problem Bounds

The upper and lower bounds for the euclidean hamiltonian cycle problem are easily ob-
tained, let Cy be any arbitrary hamiltonian cycle configuration B, so

2r < Z chord length,, = Z Dy, <2n (9)
(k7l)ECH (k,l)GCH

5.3 Both Minimum Criteria

At the first glance, the same answer to both minimum criteria is easily recognizable. By
geometrical considerations or by taking a look inside the distance matrices D, which have
structured matrices as the shown pattern below Dy, = Dyjyq

0 Dy * * oo D
Dy 00 Dy * e *
Dyyi 0 Dy % *
* Dy 0 Dy x

Dy * X ¥  Dyyr 0

since Dy; > Dyyq = min Dy = Dy = v/24/1 — cos 2 and * labels entries with x =
Dy; > Dyyy1. Consequently, the optimal configuration is p = {1,2,--,n,1} and its
reverse p = {1,n,---,2,1}

The search is “greedy ”[1] because at every step it chooses the shortest distance it can,
without worrying wether this will prove to be sound decision in the long run. Furthermore
it never changes its mind: once a point has been included in the solution, it is there for
good. This approach produces early savings in edge weights, but could be far optimal
when the cycle is formed. In the instance of our concern the geometrical distribution of
the points falls apart the right prejudice about the greedy methods. Here greedy optimum
is the optimal,i.e. paradigms i) and ii) have the same responses.
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i , 1 _ .
mﬁn d(p) = Equation(5) = mf;n 3 Z Z D1 Vi (Visa,i1(B) + Vigr,i-1(P)) =
=1

=Y D1 Vig (Vir41(B) + Vi1 (8)) = Y Dyy=nDn=

=1 =1

2m
dgreedy = dminimum = " V24/1 — cos o (10)

with p = {1,2,--+,n} and its reverse p = {n,n — 1,---,1} as the configurations which
realized optima for both minimum criteria. Since any other choices involve to go off
the optima. For each one of the previous direct and opposite configurations there are
n equivalent formal solutions corresponding to the possibility of n distinct choices as
departure point.

5.4 Both Maximum Criteria

i) Odd number of nodes n = 2k + 1, k > 2, here clumsy strategy is the optimal, that
is

» 1¢ ; ,
max d(p) = max 5 > > max > Dk Vig (Vi1 (B) + Vi (P))
=1 1 kAL

Dk,l < Dmax = Dl,l?_’czﬂj.q.l
Dk,l =¥ < D ax

/ 0 * % ¥  Dpox Dmax % * * \
¥ 0 * * * Dpox  Dmax * *
* * 0 * * * Dhax  Dmax *
* * * 0 * * * Dpax  Dmex
Doy * * * 0 * * *  Dpax
Dpax  Dimax * * * 0 * * *
* Dpax  Dimax * * * 0 * *
* *  Dmax Dgax % * * 0 *
k * * * Dmax  Duax * * * 0 )

If nis odd, son = 2k+1 k > 5 the cardinality (#) of the set { Dy # Doz} in each
row is #{ Dkt # Dmaz} = n — 2, and structures of subsequent rows are cyclotomic
after one arbitrary node had been labeled as the first. From it to the node places at

the configurational position | 2 | and [ 25| +1 should be allocated consecutively
both Dgayx

il

Drax = Dz,z+L"‘—"—5"—‘J =Dz = ‘/5\/1 T8 2k+1

—p 1 2 - - g
mB‘Xd(p) = '2’ E , E :Dl'g_,_J_z_’_czilJ. W,i (V1+J2—'°2i‘-l,4+1(p) + V;.'..L?%l,i_l(p))
i=1 I
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The previous equations run properly under the constraints of periodic boundary
conditions. For brevity’s sake we clamped the initial point at ! and tracked down
the paths from [ in the increasing order of the configurational stop.

2k+1_]7!'

ZDleHq—-n\/—\/l—cos 1 (11)

Here p are the 2n equivalent formal solutions for each optimal cycle, since we do
not care where we start the cycle or which direction we go around it. However, the
network represents these possibilities by different configurations. One city can be
clamped (e.g., so city 1 is always at stop 1) to break this degeneracy if desired.

Even number of nodes n = 2k k > 3 Dg., = 2 there is only one Dp., on each
line. The geometrical meaning of it is the existence of all diametric opposite points
between each other, when the 2k of the 2k* points of %/1 are considered. The
matrix below shows the sites allocated by the farthest neighbor, the almost farthest
neighbor and the nearest neighbor, the Doy = 2, Doy = /2(1 — cos (m — £) the
distance between the almost farthest neighbor and the nearest neighbor Dy, =
Dypae Vosurryy) all these expression must be evaluated taking into account that

n = 2k with k& > 3.

0 Dy = * Dy, 2 Doy * * Dy \
Dyiyq 0 Dy * * Dy 2 Dgy, * ok
* Dl,l+1 0 Dl,l+1 * * Daw 2 Da.w *
* * Dypq 0 Dyp * * Dg., 2 Do,
Daw * * Dl,l+1 0 Dl,l+1 * * Daw 2
2 Doy * * Dy 0  Dyn * * Doy
Daw 2 Da'u; * * Dl,l—H 0 Dl,l+1 * *
* Da,w 2 Daw * * Dl,l+1 0 Dl,H—l *
* * Daw 2 Daw * * -Dl,H-l 0 Dl,l+1
\ Dyjiyq * * D, 2 Do * * Dy 0

Clumsiest. The reversal strategy to be the greediest. After the initial point had
been choosen, the reversal greedy strategy, from now on fowards named as the
clumsiest -step by step- search run straightfoward from the initial choosen point
to its diametric opposite point. Even though the method is engaged to make step
by step the worst choosen amongst all none picked out points, after the cycle was
formed the clumsy technique was far from the worst in our instance.

For the sake of argument suppose the point (1, 0) is selected as the initial the clumsy
strategy go straight to its diametrical opposite point it has not the worst choice since
the cycle is closed in the n-digon shape (it is neatly not a hamiltonian cycle).

max Z Zma.xZDz k Vii (Vair1(B) 4 Vi1 (B)) =

k#l

n k
1 — —
= ml_jaxi{ E : E :(Dz,z+?§ + Dz+%,l+1) Vi (VZ+%¢+1(P) + z+%,i—1(P))} + Dt

i=1 l=1
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Consequently, clumsy strategy at the second stage chooses the worst amongst the
possible not picked out points, which implicated any of the nearest neighbor of its

diametrically located point Dew = Dppndo = V24/1 = cosﬂ"—ll k > 3, concisely

Dy = \/ 1 —cos(m—F) k> 3, once the third selection is done, once more the
latest point included in the cycle has the possibility to reach out its antipodal, and
over and over this occur until the n — 1 stage in which no choice is allowed because
is needed to turn back. A slightly calculation allow us recognize that if there are
2k, k > 3 piecemeal lines 2’° pass through diametrical opposite ends, other

go through the nearest ne1ghbor of its diametrical opposite and only one, the 1atest
pace, between nearest neighbors. Therefore the total track maximum distance is
withk >3

Qorumsy = k%2 + (2k — (k+1))*\/§\/1—cos(7r——%)+\/§ l—cos(%) (12)

Even though the clumsy strategy is engaged to be the worst, it can not reach out
its commitment in our instance. This search struggles so harsh at the early stages
making the worse decision as possible than the more compensatory unfavorable
search that properly realized the maximum.

Worst. The reversal strategy to be the best. The worst or farthest trajectory
begets a balance between the antipodal node choices and the nearest antipodal node
choices. Here the farthest walk is realized by configurations of hamiltonian cycles
conform with two antipodal tracks (step length 2), and 2k—2 almost antipodal tracks
(step length v/2,/1 — cos (w — T)). Therefore the total track maximum distance is

dmax = 2% 2+ (2k — 2) ¥ v/24/1 — cos (7 — F) with k > 3.
mgxd(fi) =2*2+(2k—2)*\/§\/1——cos(1r— %) (13)

5.5 The Representative Euclidean Hamiltonian Cycles

We pointed out that there are more than one formal solution for each optimal cycle.
The next figure (Figure 5.1.1 a, Figure 5.1.1 b) shows some representative trajectories of
the optimal cycles for the sake of fostering comparison between even and odd network “s
order instances. On the sketch the optimal trayectories are placed together inside the left
(n = 10) and right (n = 17) frame, respectively.

5.5.1 The point positions on the traveled path with distinct optimal hamil-
tonian cycles

Figure 5.5.1a shows from left to right the standard pattern of the shortest (minimum =
greediest) hamiltonian cycles, a path corresponding to the farthest (= maximum) cycles
and the clumsiest strategy (= anti-greediest) cycles for even number of nodes, particularly
n = 10. The left and the right trajectories inside this frame should be considered as a
representative module the symmetry group of its respective figure. It means module their
symmetry operations they beget optimal uniqueness. In contrast, the central path could
not be considered as a the unique representative module its symmetry operations.

A glance over Figure 5.5.1b addresses us to the conclusion that both optimal trajectories
Actas del VI Congreso Dr. A. A. R. Monteiro, 2001
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(minimum = greediest, maximum = clumsiest) module rotations and translations beget

optimal uniqueness.
{Irin = Dve = 616, Dmx = 18.22 , D-g = 18.23 ) Fexmat Poine 17

y vy

Figure 5.5.1a Figure 5.5.1b

5.5.2 Network Node’s Activities on the Optimal Trajectories

The activity of each boolean node in the network on the optimal trajectories are por-
trayed by the circulant digraphs. Minimum active connectivities are depicted by C (n,1),
and odd-network maximum active connectivities are sketched by C(n, [%]). In contrast,
circulant digraphs are unabled to represent the optima when the network is conformed
by an even number of points, since the absence of regularity at the optima trajectories.
Figure 5.5.2 from left to right shows a representative for the minimum (= greediest), a
representative for the path of the maximum star regular polygon (neither maximum nor
minimum), a representative cycle for the anti-greedy strategy (clumsiest) and one of the
possible representation for the maximum strategy. The absence of regularity on the opti-
mal paths make failure the possibility of the use of circulant digraphs in order to desplay
the network node s activities at any attainable even-maximum.

{Dein = D+e =6.123 ) {Dstarg (10/3)= 16.18 } {DistC = 18.2265 } {D-e= 19.2169 }
Figure 5.5.2

6 Epilogistic Application

Focusing on the Principle of Least Time (Section 3.3), our contribution makes evident
that rays obeying the law of reflection ? occasionally maximize or minimize ray travel
time and there are even valid ray paths which neither maximize nor minimize the travel
time function. Previously to the explanation of this breakthrough at the quasi-spherical
mirrors let us compare, the reflection law on some light paths over the spherical mirror
(Figure 6). We choose two different ray paths both of which start at the center C of a
spherical mirror of radius C'A, reflect once, and return to a point B on the axis behind
the center after reflection. One ray reflects at A and the other at D. The ray path CDB
which approaches the mirror head-on and returns along a diameter is the only one con-

*Hero’s Problem, 125 B.C., Alexandria (Figure 3.3a).
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sistent with the reflection rule (6; = 6,.). It is also longer than neighboring paths such as
CAB (6; # 6,) and for this reason has a longer propagation time. Light sometimes follows
the longer path (CDB) between two points (C and B). An analytical proof that the
ray CDB maximizes the propagation time, comes out from the geometry of a Spherical
Mirror. Let R = CA = AE and a = <DCA. The propagation time function T(a) is
maximized for @ = 0 and minimized for o = 7. Let [(a) be the total length traveled
by a possible light ray that follow the track sketched on the Figure 6 called CAB. The
endpoints of the trajectories are placed inside a uniformm medium, consequently the ray
lights travel straightfoward, i.e., on straight lines. By the way, the task of looking for sta-
tionary points of the light propagation time function T'(c) is equivalent to search for critic
points of the total length traveled by a possible light ray module the light velocity constant
¢ ~ 300000 ’;—;"g— of the specific medium, consequently I() oc T(a). Then we solve T'(a) =

Spherical Mirror

Figure 6

The light propagation time at the trajectory C DB has the expression T'(a) = CA +
AE + EB. Here CA = R and CB are known, so T(a) = 2R + CB cosa, T(a) =
~CB sina. Therefore, T(a) = 0 if and only if @ = 0, @ = 7 in terms of this practical
application we get rid of its periodic multiples. The calculation of T(a) and its immedi-
ate evaluation at the critic points show that o = 0 is a feasible ray path with greatest
light time propagation function (T(a = 0) = —CB). On the contrary, o = = is the
other feasible ray path but this linear trajectory minimizes (T(a = 7) = CB) the ray
path propagation time between C and B endpoints placed at the virtual normal of the
spherical mirror. The monoparametric («) propagation time function between the only
two feasible ray paths consistent with Fermat’s Principle one (C — D — C — B)a=o
is the maximum, and the other (C — B — D — B)a=r is the minimum. Therefore,
rays obeying the law of reflection 6; = 6, occasionally mazimize as well as minimize travel
time. There are even valid ray paths which neither mazimize nor minimize the travel time
function. For instance, rays beginning at the center of a spherical mirror and reflecting
from it anywhere on the surface and returning to the center all have the same path length
T(a) = 2R and travel time. These and another exceptions to the Principle of Least Time
involve reflection in special circumstances.

Farther along with our aim to contribute by a close theoretical example for testing
any approximated technique we analyze the consistence of the Reflection’s Law as a Least
Time Principle at the for us sired quasi-spherical mirror device in terms of bringing about
an application. We conceive a quasi-spherical mirror by fitting n flat mirrors with its mid-
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dle point sited on each /1 points and whose respective principal normals pointed toward
the hub of the unitary circle. We use the eponym Fermatian associated to every light ray
path that undergoes the law of reflection, it means, the angle the incident ray makes with
each flat mirror’s normal, 6;, equals the angle the reflected ray makes with its normal, 6,
ie. 9.5 = 07..

Our computational results make evident that if the number of flat mirrors joined is odd
and focusing on hamiltonian cyclic paths certain Fermatian’s cyclic rays minimize the to-
tal time light propagation multiparameter function as well others Fermatian’s cyclic rays
maximize the total time propagation light function. Cyclic Fermatian’s minimum trajec-
tories -module plane rotations and translations- have the regular odd polygon perimeter
shape, and cyclic Fermatian’s ray -module plane rotations and translations- have the odd
stargon of maximum density shaped cyclic trajectories.

In contrast, whatever even-quasi-spherical mirror considered the minima are worked
out by Fermatian’s rays nevertheless the maxima of the time propagation light function
never will be attainable to any Fermatian’s ray. Precisely, the cyclic even-star regular
polygon maximum density shaped paths do not reach out the maximum.

Concisely each even-stargon shaped paths and each odd-stargon shaped paths with
density § < |Z] all are unabled to optimize the propagation time function even though
they are Fermatian’s rays, i.e., they are truly rays.

We show that in a quasi-spherical mirror there are feasible ray lights that propagate
not always within the trajectories of least time -brachistochores-, some feasible T8y prop-
agates on cyclic trayectories spending the longest time, and what is more surprisingly of
all is the existence of feasible ray light paths which neither maximize nor minimize the
travel time propagation ray light function.

7 Conclusions

This presentation is an offspring of a series of related works in what we have participated
from a first-borned idea posed formerly at the communication titled Folding pathways
as brachistochrones published in the Proceedings of IV Congreso Dr. A. R. Monteiro
[15] and the paper The RNA folding problem: a variational problem within an adiabatic
approzimation submitted by Biophysical Chemistry, Elsevier Editor [16]. Both works
have sustenance under the spirit of Pierre de Fermat’s Principle. Who, focusing on many
of the important facts of ray optics well known in his lifetime, quoted in “Analysis ad
Refractions ”: Nature operates by the simplest and most ezpeditious ways and means.
We struggle on for further goals [17], all of them maintain, like the present contribution
does, the following ineffaceable footprints:

1) The scope is teleological, i.e., by postulating a final cause.
2) The exhaustive exploration of the configurational space is a ludicrous aim.

3) The overcome of the paradigm normally requires the design of the approximation
techniques.

4) The theoretical study of cases of these benchmark problems when it brings about
the exact solutions will be utilized in order to test the responses of the approximated
proposal.
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Under the previous framework we solve a specific Buclidean Cyclic Hamiltonian Problem
on the /1 Points mainly by geometric consideration and related our results with an ap-
plication of the renowned Fermat’s light ray postulate. We show that in a quasi-spherical
mirror there are feasible ray lights that propagate not always within the trajectories of
least time -brachistochones-, some feasible ray propagates on cyclic trayectories spending
the longest time, in other words Nature sometimes is extravagant as well as economical
and what is more surprisingly of all is the existence of feasible ray light paths which
neither maximize nor minimize the travel time propagation ray light function.
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