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ABSTRACT. The number system with base b=—n+i , n€{1,2,...}, and set of ciphers (digits)

D={0,1,..,n* )} gives rise to a congruent tiling of the plane in which each tile touches exactly six
different tiles whenever n #2. Instead, if n=2, each tile touches ten different ones but it is in contact
with four of them in only a finite set of points. The cardinalities of these sets are given and their
elements are determined. It holds that

1<s =dim,(dF(n))=dim, (3F(n))=logA/logp| <2
where F(n) is the central tile and A is the spectral radius of a nonnegative matrix associated with the

number system. Moreover, dF(n) is an s-set. The preceding equalities and inequalities hold for more
general tilings associated with number systems, (cf. Ths. 2 and 4). @

1. INTRODUCTION. A) The number system (,D) with base b=b(n)=—n+i, n a positive
integer and set of ciphers D=D(n)={0,1,2,...,n* } was studied by K4tai and Szab6 in [KS]. The
complex numbers are representable in each of these bases. F=F(n) is the set of complex
numbers that have a representation with integer part zero in the number system (=n+i,D(n)). It
defines the central tile of a tiling 7 =1(n) of the plane derived from the base ~n+i. L=[1,i]
denotes the set of Gaussian integers. Observe that 5L € L D D and that D is a complete set of
residues modulus 5, that is, for ye L there exist xe L and ce D such that y = bx + ¢ where x and
¢ are uniquely determined.

The family of traslations of F(n) by numbers in L is in fact a ressellation 7(n) of the plane,

T= { E=F+t:te L}. This means that it is a covering of R* (C is representable) with tiles

such that two different traslations of F have an intersection of Lebesgue measure zero. (This is
a consequence of the facts that D is a complete set of residues modulus 4 and

2
p| =n" +1=card D cf. [K] or [B] Th. 2 and Prop. 5).

F(1) is the so called twin dragon. We shall study in this paper only the bases b(n), n>1, since
Davies and Knuth’s space filling twin dragon curve is well known. For n=1 and in the context
of number representation the reader can consult, among several other references, our paper
[BP], where this case is studied in great detail. There it is shown that the conclusions to which
we arrive here for #>2 hold for n=1.

Our purpose is to prove that the compact sets F(n), n>2, like F(1), have a common frontier
with exactly six different tiles and that the tile F(2) has points in common with exactly ten
different ones.
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52 A. BENEDEK AND R. PANZONE

B) W. J. Gilbert proved in [G] the formula

¢} dim , (OF(n))=logA/ log‘bl

where A=A (n) is the spectral radius of a primitive (nonnegative) matrix and the greatest root
of the polynomial

) rx) .. x° = 2n-Dx* ~(n-1)*x~(n* +1).

This is proved by Gilbert making use of the § -Hausdorff measure of dF(1n) and showing that
H’(9F(n)) is finite for § =5 = logA/loglp| and infinite for & < s. It also follows from the

Corollary (1.14) of [V] where it is shown that logA/logp| < 2. Moreover, it can be obtained

from [DKV], Th. 2.

F(n) is the invariant (compact) set of the iterated function system given by
{®,(2) =b""z+c: ce D(n)}. It satisfies the open set condition with the open (non void) set
int(F) . Since OF is a sub-self-similar set, according to [F2], Th. 3.5, we have H*(dF)>0
where s = dim(9F) = dim 4(9F).

Collecting results,

3) 0 < H'(0F(n)) <, s=dim,(dF)= dim,(dF) = logA/loglb|<2.

C) Formulae like (2) and (3) hold for tiles that appear in several tilings. In this relation the
reader could consult [DKV] and [V] where very general results are proved. We show in the
following sections of part I, precisely in Ths. 2 and 4, that the formulae hold for tessellations
derived from quite general number systems.

s F(1)

F(4)

I. GENERAL THEORY.
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TILINGS ASSOCIATED WITH NUMBER SYSTEMS 53

2. BASIC RESULT ON THE HAUSDORFF DIMENSION. The next Theorem 1 can be
proved repeating almost verbatim the proof given in Theorem 3.1 of Falconer’s book [F] only

replacing the functions g that appear there by new functions /-

THEOREM 1. Let E be a non trivial compact set and a and r, two positive numbers, r, <1,

such that for any set U C E, 0 <|U| < r,, there exist V = V(U) c E and a map ffrom ¥ onto U
that verifies

(4) v,weV=>|f(v)—f(w)|$|%—l[v—w|.
Then, the box dimension dim4(E) exists and if s=dim, (E) then i) and ii) hold:

iy H'(E)> a’
ii) s =dimy(E) .e

We shall assume the next two hypothesis.
H) Let 5eC (E RN,N=2), Ib]>1, be the base of the number system {b,D} with
D={O,al,...,a,,}<:RN its set of ciphers (digits) such that there exists a point lattice

L=[1,g):={m+ng:mneZ}c R" verifying bLUD < L with D a complete set of residues
modulo b, (i.e., each point y of L can be written in a unique way as y=bx+c, xe L, ce D).

DEFINITION 0. F:={z:2=0.c,c,...;c,€ D} and F, :=t+F. »
W) {F:1€ L} isatessellation of R, (i.e., RY =UE, m(F, A F)=0 for uv).

THEOREM 2. If H) and H’) hold then

a) the box dimension of E := dF exists,

b) s =dim, £ =dim, F |

c) H'(E)>0,

d)I<s5<N.o

PROOF. a), b) and ¢) will follow from Theorem 1. In fact, suppose U C E has diameter
0<[U]| < =p/p| where 2p =min{ |A;0 # A € L}. Let k be the positive integer verifying
pI< PPl <o,

M
We write U=U U, where each U, is of the form Uﬂ(F;lblm,,k NE ) (cf. Def. 3),

¥ .CpnCy
=1
yeS*={teL:t#0,FNE #@} (Def. 1) and b;,c, € D depend on j. Let g, (2)=b"z+1,

k
where ¢, := —Z bb*™ is a point of the lattice L (this because of bL U D C L). Each similitude

i=1
g, maps U, into E and | 8,(2)—g,(2) ‘ is either identically 0 or > 2p0-

Therefore, if the maps are not identical then
k
() dist(g,(U), g, U))2 20 - [UIB> L.
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54 A. BENEDEK AND R. PANZONE

M
Let V=UVj where V, :=gj(Uj) and define f:V—U by f(z)=g,_'(z) if zeV,.

J=
Observe that if V,NV, # D then, by (5), g;and g, must be identical. Therefore, f is well
defined and onto U. We claim that if z,w e V then

U
(6) lf(2)- f(w)|< |—a—||z—w|,where a=plp|.

This will show that the hypothesis of theorem 1 are fullfilled, so a), b) and c) are true.
Let ze€V,, w € V,. There are two possibilities:

i) g,and g, are identical. Then, |f(2) - f(w)|= lz—wlp[* S%Iz—wy

ii) g,and g, are not identical. Then, using (5), one gets |z — w|> dist{ VJ.,V,,} >p
Pl
and If(z)—f(w)|$IU|=—5‘U|<—p—|z—w‘.

Thus, in any case (6) is true with a = p/p)|.

Let us prove d). s <N is a consequence of ¢) and the definition of tessellation. On the other
hand, F is a compact set with non void interior and E is compact. Any compact set with
Hausdorff dimension less than 1 is totally disconnected. Then, if s < 1, the complement E’ of
Ein RV, N>1,is a connected set. A polygonal path in E’ from one point in int(F) to a point
in ext(F) contains necessarily a point in F with two representations. That is, a pointin E, a
contradiction, QED.

Note that Theorems 1 and 2 were proved in [Z].

3. BASIC RESULTS ON THE BOX DIMENSION. Since we wish to make more precise
the statement a) of Theorem 2 we introduce a method, that we borrow from [BA] pgs. 5-9, for
estimating the box dimension of certain sets. It is a slight variant of the method presented in
[K], pgs. 11-12. We restrict ourselves to plane sets. However, the preceding results and those
that follow can be extended without much difficulty to dimension N > 2 and generalized
number systems, (about these systems cf. for example [BO}).

Assume that the hypothesis H) of Theorem 2 holds. Observe that this hypothesis implies the
important

PROPOSITION 1. The integers of the system, W:= {(cm...c0 ), :m20,¢; € D} = { Z;"cib" }

c L, have a unique positional representation as integers of the number system {,D}.e

Let S, be a net of cubes in R? with sides of length r parallel to the axes,
S = { q+1T:TE rZ"}, g a cube of side of length r. The upper box dimension of the bounded
set ECR? is defined by dim s (E) =lim logN(r.E) ¢or 5 0 where N(r,E)=card {cubes €

logl/r
S, that intersect E}. Several other families can play the role of the S,’s. We wish to use

farlrililies of sets T of positive measure for which there exists a fixed constant K verifying
IT l Im(T)< K where |T]=diam(T). We use the notation B ;=B(0;1) for the unit ball with
center the origin.
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TILINGS ASSOCIATED WITH NUMBER SYSTEMS 55

LEMMA 1. Suppose that {T+y iy EA} is a covering of the bounded set E, that is,
EcU{T+y:y €A} and (T+y)nE# @ for y € A. Assume that a) and b) hold:

d
a) g€ S, , m(Ty=m(q), M <K<
m(T)
b) EcU[T +7 : ¥ € A} a covering such that m((T +y) N (T+y") =0if y £y ".
If M(r,E):= card A then
M(r,E) < Km(B).N(,E) , N(r,E) < Km(B ,).M(r.E). ¢
PROOF. Let EcU {q +7:(q+T)NE# @} and for y € A, E=E() the family of 7 s for
which (T+y)N(g+7)NE= Q.
If y=card £ then ym(q) = ym(T) < m(B(0,|T |+ g}) = QT|+ {q[)’ m(B,) Thus, y < Km(B,) and

Mr E) < (sup y) M(r,E) < K m(B ) M(r.E)
and the lemma follows, QED.

LEMMA 2. Let & be a positive integer and g l0a decreasing sequence such that kr,,, >r,.
Then, the following expressions have the same limits for Jj —> e and r — 0, respectively,

logN(r;,E)  log N(r,E) .

logl/r, ’ logl/r
PROOF. A cube ge S, intersects at most (k +1)* cubes of S ru - Lherefore,
N(r;,, E)<(k+1)’ N(r,, E) .
We used only that kr,,, > r,. However, if r < r; itholds that
N(r,,E) <2N(r.E).
Then, for r L <r<r; < krj+1 , we obtain,
N, EYS (k+1)* N(r;, E) < (2(k + 1)) N(r, E) < 4% (k +1)* N(r,,, E) ,

Besides, logl/r;,, 2logl/r2logl/r, > logl/r,, —logk. Thus,

l04‘%1\7(”,‘+1715’7)<logN(r,E)+c<10gN(r,+,.,E)+E
logl/r,, — logl/r " logl/r,, ~logk

—logN(r,,E) —— :
From (7) we obtain, for example, lim —gg——g’——)=hm log N(r. E)

, QED.
o= logl/r, =0 logl/r

LEMMA 3. Let 7, 10 with kr, 21, q€ Sr/, k a positive integer. For each j let T=T(j) be such

that m(T)=m(q), (IT]+ Iq[)d /m(T) < K< o with K independent of ;.
Assume that {T+y :y € A}, A = A(j), is a covering of E verifying
yzy =m((T+y)N (T +7))=0.
If M(r, ,E) = card A then
- log M(r,, E)

®) dims(E) =T dim, (E)=lim 2612 E)
=jm ) m =AM
s ()0 Togrry, 0 e T e
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56 A. BENEDEK AND R. PANZONE

—_ logM(rj,E) —_— logN(rj,E)
=lim

PROOF. Because of Lemma 1, lim . It follows from Lemma 2

logl/r; logl/r,

— log N(r, E) QED

that both are equal to lim
-0 logl/r
DEFINITION 1.5°:={yeLy#0:3;=0g¢,.=y.EE..}. In other words,

s={yeLy#0:FNF, #@}.Ify € S°then V, = FOF,. T :=card §°.¢

DEFINITION 2. G(S°) will denote the graph with set of nodes S° and arrows

(&

Yy —L 5y =vb+ & — € whenever Yo+deS°, d=E~¢€ and g,€€D.®

We know from the definition of §° that given y €S° there exists a point z such that
2=0.6¢,...=y +0.£E,... €V,. For this point, (}p+&~€)+0.E,...=0.5,... . Since D is a
complete set of residues modulo b, Y+ & — € # 0. Then yb + & — € € §°. Hence, from y starts
an infinite path in G(S°) that defines the point z =0.£¢,... € V. It is not difficult to see that
any infinite path in G($°) starting from y determines a point in ¥, . We have then the

PROPOSITION 2. From each y € §° stat’ts; at least, one arrow which is the beginning of an
infinite path in G(S°) that determines, as shown above, a point z€ V, . ®

DEFINITION 3. F, ., ={2:2=0+0abc..mcc,..;c, e D}, 0 €L, a,b,...meD . We
write also ©.abc...m instead of © +0.abc..m mainly when o € W, the set of integers of (b,D).

DEFINITION 4. M(n,y) is the number of paths in G(S°) of length n starting from y €5°. That
is,

M(n,y) = card {(81,...,8,,;51,...,5,,) 138,038 et D ED T =Y + Eéjb‘j};
1 1

m(nyy=card (¢, ....€,): 3E 10 Empz 33818 s 081008,y =Y +OEE,. }.0

The family {F,,, , '€ L,a € D} is a tessellation of the plane like { F,:teL} but with
smaller tiles in a ratio *bl-" and m(n,y ) is the number of such tiles contained in F and in

—n

contact with V. They form a covering of v, by essentially disjoint sets of diameter |F“b

-2n
and measure 7(F’ )|b| . Obviously, m(n,y)<M(n,y).
On the other hand, M(n,y) counts the number of pairs of tiles in { F,,, , 7€ L,q; € D} with

non void intersection such that one of the tiles is in F and the other one in F,. For fixed
€,,..€, the number of possible sets £,..,, is not greater than I'. In fact,
" +(&,..E,), —(€.-€,)} + 0&, 1o =06, o - I T 18 the number inside the brackets then
7€S°%and (£..8,), =1 -vb" +(€,..€,), € L. Because of Proposition 1, the Ej’s are uniquely
determined by 7 . Thus

9 m(ny) < M(ny) < T .m(n,)y).
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TILINGS ASSOCIATED WITH NUMBER SYSTEMS 57

Observe that M(1,y ;) is the number of arrows in G(S°) starting from y ;-
DEFINITION S. p, (or also Pmk ) denotes the number of 1-paths from y, to v, .e

Then, foreach y ,, M(l,yj)=2pjk 21.1f M(0,y,) =1, we have, for n 20, that
k

(10) M(n+1y,)=Y p,M(ny,).
k=1
M(”»Y]) Pu o Dir
If Y = L P= then YV = py®=pry®=priy®,
M(n,yy) Pri  Prr

P is a nonnegative matrix that verifies PY® = ¥ >1.Y®> (. Therefore, its spectral radius

A is an eigenvalue not less than 1. Besides, there exists a non null T -dimensional vector
Vv 20 such that PV =Av.

There also exists p >0 such that Y > u¥. In consequence,

UAT = Py < P YO = 7D
Then, if 7 is such that v, (the ¥ " element of V) is positive then M(n+1,y)= pA'v,>0.
Therefore, for an adequate constant B, we have,

n logﬁ +o(l) s =222 logM(n.y) . On the other hand we obtain

logp|

nlogA +B<logM(n+l,y) and

log M (n,y) and logm(n,y) have the same limits.

from (9) that
loglb"' log(lb t)
We call 7; = fm(F) ,bl Foc,. = ’ I and apply Lemma 3 with K=2K’+4 and
(Fog,‘,.gj) m(F)

M(r,,V,) =m(j,y). It follows that
- log M(r,,
) 1082 i 10BMUD) _ i, OBMUY)_ 5, 108 MC 1)

logh| "~ logl/r,  loglir, — logr

Since the last limit is equal to dim,V, we have,
(12) logA/loglh| < dim,V,.

THEOREM 3. Assume the hypothesis H) and H’). Let 4 be the spectral radius of P.
DIf v, =FNF, then dim ,V, <logA/loglb|.
i) If ¥ is such that v,> 0 (v, = the 7" element of ¥, V an eigenvector corresponding to A )

then the box dimension of Vy exists and
(13) logA/loglb|=dim,V,.e
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58 A. BENEDEK AND R. PANZONE

PROOF. i) [r

lS”P"H“Y(U’" implies that M(n,
7—logM(n,y) _ logA

and therefore

log M(n,7) < log( | )+ o(1). Thus, lim . As above, applying Lemma
n log|p” loglbl
3, we get,
d1m Vv, = lim _____logm(n v) ——-log M(n.y) log/'t
log}p” log|bl

ii) follows from i) and (12), QED.

4. THE MATRICES P AND Q. One can find A =p(P)=the spectral radius of P, from a
nonnegative matrix @ whose order is the half of the order of P and verifies p(P)=p(Q) .
Observe that S° and the graph G(S°) are symmetric. In fact, given ye §°, the equality

0.£..=y+0£... implies ~y +0.6...=0..., soc —¥€S°. Besides ¥ —Lf—)——w’ =y+€-¢€and
-y —Ll—a—y’ = b(—y) + € — €. Therefore,
(14) S§°=-8°, M(ny)=Mn,—-y).

DEFINITION 6. Let S" be a subset of S° not containing opposite elements and such that §°
= 8" U(~S8"). Let A:=card $"=T'/2 . e
We get from (10) and (14) and for y € S", that

(15) -~ Mu+lLy =Y PsMn,6)=Y (Bs+PF, )M(n,0 ) = Y 0, M(n,5).
des° Ses" des"

This defines the matrix Q=[ 0,1, v,6 € §". Using the set of indices S"U(-S") we see that

A B
P= (B A) and using only the indices in §" we have 0=4+B. Then,

A+B—xI A-xl
It follows from this that the spectrum of Q is contained in the spectrum of P. For certain

- - ) A BYV v
nonnegative vectors v, w with v+ w #0, it holds that (B A)( J = /1( _,). Thus,
, w

A+ B-xI B
det(P —xI) = det( )= c(x)det(A + B — xI)=c(x)det(Q — xI).

w
(16) (A+BYV+w)y=AF +w) -
Therefore, A is in the spectrum of Q and the two matrices have the same spectral radius.
Thus, we proved c) of the next theorem.

THEOREM 4. Assume that the hypothesis H) and H”) in Theorem 2 hold:

H+H”) Let b €C be the base of the number system {b, D} with P|>1 and D={0, a,,..a, ycC

( RY,N= 2) its set of ciphers. Assume that there exists a point lattice
=[lgl={m+ng:mneZ}c R such that bLUD C L and that D is a complete set of

residues modulo b. Suppose that the family {F, :re L} is a tessellation of R" where

F={z:2=0.c¢,..;c,€ D} and F,:=t+F.

Then,
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TILINGS ASSOCIATED WITH NUMBER SYSTEMS 59

a) For any y €$°, dim,V, <logA/loglp| but logA/loglt|=dim,V, for each V,=FNF,,

¥ €8°, such that the element v, of an eigenvector v corresponding to the eigenvalue
A B
A =p(P) of the nonnegative matrix P = (B Aj is positive.

logA

loglp|

¢) Ais equal to the spectral radius of the nonnegative matrix 0=4+B.

d) A may have a geometric dimension greater than one.

e) Let us denote with 7@ the column vector of dimension A such that (3®), =1, weS".

b) The box dimension of E = dF exists and dim, E =

Assume that 1 is in the spectrum of Q, that 4 is an eigenvector corresponding to the
eigenvalue 1 and that W >0 is an eigenvector corresponding to the eigenvalue A . Suppose

that © =(L,....1) W + 4. 1f y € §" is such that (#),=0 then
card(V, )= card(V_,) < ee.

f) Assume that there exists a family of eigenvectors Zk , k=1,...,r, corresponding to
eigenvalues e, of Q such that 7©® < zﬁk . Then, for any vy €8, H’(V,) < and
1

0<HYW(E)< oo, ie., E is an s-set. o
PROOF. a) is the content of Theorem 3 and ¢) was already proved. From a) and the finite
stability of the upper box dimension we obtain

982 _ ik > dim, E'> sup, (dim,V, ) = &2
log|b| log|p|

and b) follows. In part II we give an example that demonstrates that d) is true.

¢) Recall (16) and that A=card S". We have 0"3© <Q"W + 4=A"W + A . Then, using (15),
we arrive at the inequality B

(17 ¥ =My, My )Y SAW

If the ¥ —element of W is null, (W)y =0, then M(n,y)< (Z)y . The positive integer M (m,y)
is the number of m—paths in G(S°) starting from y. We know from Proposition 2 that
M(m,y) < M(m+1,7)- Thus, we have from the last inequality and for some p that
M(p+ j,y)=c ifj > 0. Therefore, it follows that there are ¢ co—paths in G(S°) starting from
Y. Since to each such path there corresponds a z=0.¢,..€,.. = Y&.E,.. €V, and this
correspondence is onto, there are at most ¢ points in v,. (It might not be 1:1 since the
representation may not be unique). Thus, card(V,) = c'< ¢ <eo. Observe that, by symmetry,

card V)= card(Vy) .

f) We have H;(V))= 0 0)6°< M(ny) 8° for yeS® and 4 =|F"b|_". Thus,
Hy (V)< lF M (”,Y)|b|_m. By Theorems 2 and 4 we have A= lbr . Since Q and $© are non

negative, instead of (17) we obtain,

(17,) j,’(”) = (M(nBYI),---sM(n’YA)) S Z(ek)n;{k'
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60 A. BENEDEK AND R. PANZONE

But |e,|<A implies that 0< 3™ <A"Z with Z a positive vector. Therefore, M(n,y) < KA’

for every y € §°. Thus, H;(V,) < C(}br)".lb[_"s = C. In consequence, H’°(V,) <oo. Now, it
follows that H°(FE) <<=, QED.

REMARK 1. i) If 7> 0 there is a constant K such that Y <KV and by f) E is an s-set. ii)
Observe that (17) is a particular case of (17°). iii) Since 0 < @ < ™, in the hypothesis of )
and f), ® could be replaced by 3™

II. APPLICATIONS.

5. THE NUMBER SYSTEM (b(n),D(n)), n>1. PRELIMINARY RESULTS. The diagrams in
Figs. 1 and 2 show the
central tile of the
tessellations derived from
the bases —3+i and -2-i,
respectively. In the first case
the tiles F, j = 0, 1,
T (3+), £ (2+) can be seen

. and in Fig. 2, the tiles F,j=
0, *1, =i, i(2+1),
_ ' + (2+2i), £ (1+i) are shown.

; ‘ ’ N If b=—-n+i, n=2, we have
b’ =n’ —1-2ni, b3=—n3+3n+(3n2 =1)i. Thus, -1, b, -b” and b are in the second quadrant of
R%.

LEMMA 4. The diameter of F(n), |F (f’l)l veriﬁes the inequalities

b-l=ln+1+i>

Ib 1
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TILINGS ASSGCIATED WITH NUMBER SYSTEMS 61

PROOF. Let d; eR and z=d, +dib + d,b* +d;b*, w = —|d,|+ bld,| - b*|d, |+ b°|d}|.
Then, [Re(2)|<[Re(w)], Im(z)|< [m(w)|, lz|< |w|. Besides, if |d f| increases then || increases.
Therefore, for d , € D-D, D={0,1,...,n* }, we have

<014 b= b% + b = n?|b? +1)(b - D] =’V + 4n + 20+ 2,

If a=Fcp”,B=Neb7, c,& e D, then [ B = E} b
. 1 1 1

=Y b(d,; +d,,_b+d,, b +d, j_3b3)l <n(n? +4)(n* +2n +2) 1 Thus,
1 _

Bl -1
(18) |a—ﬁl<\/n2+2n+2=|n+1+i|<n+%.

Ifc;;=6,,=0,¢,,, =8, = n’ then a— 8 =n’ /(b +1) and the Lemma follows, QED.

6. THE SET S. To find the tiles in contact with F=F(n) we have to study a finite set of
gaussian integers, S°, that was introduced in §3. Recall that L =[1,i], (cf. §1).

DEFINITION 7. S=S(n)={y € L: 3z=0.c_cp... = ¥.& & ... }.e

Thus, $°=\{0}={y € L,y #0:3z=0.c,..=y.2,.. }={r=a-BeL: y#0, a,BeF}.

It follows from formulae (18) that S=S(#) C B=B(0, ln+1+i )= the ball of center 0 and radius

Jnt+2n+2 .

In the next proofs one should keep in mind that if y = x+iy € S (S°) then

(19) y' =&+in=by+¢,~c,=by+deS(5°,
5:—nx—y+d,n=x—ny, d=¢,-c,eD-D.

PROPOSITION 3. If x +iy € S(n) then

i)if [y 21 then [¥|<n,

ii) [Y[£2.0

PROOF. If [y|21 then x* + y* <n®> +2n+2 implies . £ <n®+2n+1=(n+1)*> and then
P{<7n.If |¥|>2 then |x—ny|2 n(ly|-1) 2 2n. That is, 21<§ +in|<n+3/2 a contradiction,
QED.

PROPOSITION 4. If n>2 then S(n) C BA{ZU(Z+ i)}

If n=2 then S € BN{Z\(Z+ )u{+ (21+2i)}}.*

PROOF. n>2: assume that [y|=2. Because of Proposition 3, |n|=|x-my|>n>3, a
contradiction. n=2: [y|=2=22|n|=|x—2y|22. Thus, 2=|x—2y|. If y=2 then x=2 and if
y=-2 then x=-2, QED.

PROPOSITION 5. Let n>2. Then § ¢ {0,£L £ (n+i), £ (n—1+0)}.

Let n=2. Then S < {0,£1, £ (2 +i), £ (1 +1), £i,+(2+2i)}.+

PROOF. if 0#£x+0ieS then xe Z\{0} and n=x. If n>2 then, because of Proposition 4,
&+ineS implies that [1|S1. So, |x|<1 and x=t1. If n=2 then |n|=|x| < 2. However, if n=2
then £=2. Thus, 2=—2x+d=—4+d. But this equality cannot be satisfied by any d in D-D. If
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nN=-2 then —2=4+d and again this is impossible. In consequence, even for n=2, 0#x+0i € §
implies x=+1.

Let x+i € S. Then, n=x—n. Using what has been proved and Proposition 4, we have,

a) x=n=n=0=|f<1= l—n2 -1+ dl <1 and this can be accomplished with d = n*. Thus,
n+i is a possible gaussian integer in S. Since S = ~S, —n~i is in the same situation,

b) x=n—-1=n=-1=> |§| <n= |—n2 +n-1+ dl < n, thus, n—1+i and its opposite cannot be
excluded as possible candidates in S,

¢) x=n-2=n=-2=>n=2=>x=0, thus, i are, in principle, gaussian integers in S(2)
and the proposition follows, QED.

7. A GRAPH ASSOCIATED TO S°(n). As we already know the gaussian integers of the set
S° identify the tiles in contact with the central tile.

-n-1

b=-n+1 , n=2

Fig. 3

d ==-2n+1

THEOREM 5. Let 7>2. Then §°(n)= {1, £ (n+i), £ (n~1+)}.

Let n=2. Then S°Q2)={ %1, £i, £ (2 +i), £ (1 +i), £ (2 +2i)}.¢

PROOF. Let us call 7=T(n) the set of points inside the brackets. We proved that S°(n)CT(n)
for n>2. The directed graphs in Figs. 3 and 4 show all the arrows from points ye T to points
yb+de T with the real integer d € {——nz,...,nz} beside the corresponding arrow. d is obtained

using formulae (19) and Proposition 5. From every ¥ in T starts at least one such arrow. This is
sufficient to ensure that S° = T (cf. [K] or [B] p. 31), QED.
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8. A MATRIX ASSOCIATED TO 5°(r). Let d be the integer beside an arrow of the graphs
above. If d 20, it can be written in n*> — d +1 ways as a difference of ciphersin D,
d=n'-(n*~d)=..=d—-0.Ingeneral, d = ¢, —c_, can be written in n® — |d|+1
different ways as a difference of two ciphers. Thus, an arrow in Figs. 3 and 4 from

P(n) n>2 »n-Y+i 1 n+i —ntl—i -1 —n—i
n—1+i 0 0 (] 2n—1 0 2n

1 n*-2n+2 0 n’ —2n+l 0 0 0

n+i 0 0 0 0 1 0
—nt+1~i 2n-1 0 2n 0 0 1]

-1 0 0 0 n’ -2nt+2 0 n’ =2nt+1
-n—i 0 1 0 (] 0 0

PQ2) 1 i 1+i 2+i 242§ -1 ~1-i —2~i -2-2i
1 0 3 2 1 0 0 0 0 0 0

i 0 0 0 0 0 0 0 0 0 4
1+ 0 0 0 0 0 0 2 3 4 0
2-+i 0 0 0 0 0 1 0 0 0 0
2+2i 0 0 0 0 0 0 0 0 0 i
-1 0 0 0 0 0 0 3 2 1 0
—i 0 0 0 0 4 0 0 0 0 0
-1 0 2 3 4 0 0 0 0 0 0
—2—i 1 0 0 0 0 0 0 0 0 0
-2-2i © 0 0 0 1 0 0 0 0 0

y=x+iytod=by+d =(—nx—y+d)+i(x—ny)=¢ +n in fact represents n’ —|d|+1
arrows corresponding to the several ways in which d can be written. This information is
contained in the matrix P=P(n) shown above where P " =n’ —|d|+1. Since P _; =Py, the

A B
matrix P is of the form P(n)=(B A) where A=4(n) and B=B(r) are square matrices of equal

order (=3 if ©>2, =5 if n=2). The matrix P was defined in §3.
We deal next with the matrix Q(n), Q:=A+B, (see § 4). We have for n>2,
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n=-1+i 1 n+i
2n—-1 0 2n n-1+1i
o=\ n*=2n+2 0 (n-1y 1
0 1 0 n+i
(20) det(Q—xD)=-x*+Rn-Dx* +(n* - 2n+Dx + (n* +1).

LEMMA 5. If n> 2 then Q(n)is a nonnegative primitive matrix. ¢
In fact, O/ > 0 for j >2. Thus, the Perron-Frobenius theory applies to it.

For n=2 we have,

1 i 14+i 241 2+42i
0 3 2 1 0 1
0 0 0 0 4 i
02)=0 2 3 4 0] 1+i
1 0 0 0 0 2+
0 0 0 0 1) 2+2i
(1) det(Q(2) — xI) = x(x - (= +3x* + x + 5).
Observe that the cubic factor in the formula (21) coincides with the polynomial (20) if n=2. It
0 21
is the characteristic polynomial of the matrix Q,=| 0 3 4}. Q, is a primitive matrix since
1 00

Q/> 0 whenever j >2.
Let A=A (n) be the (unique positive) eigenvalue of Q(n), n>2, of maximum modulus. It is
easy to check that A >+n® +1. A(2), the greatest root of (21), is also an eigenvalue of 0,

and verifies the preceding inequality. Thus, for n>2, A4 (n) is not only the unique eigenvalue
of maximum modulus of Q but it is also equal to the spectral radius of Q or Q. Besides, we

have the
2
PROPOSITION 6. )| = (" + 1) < A(m) <n® +1=p[" »

PROOF. The first inequality was already proved. A <n®+1 is a consequence of the last
inequality in the following Theorem 6, QED.

9. THE HAUSDORFF AND BOX DIMENSIONS OF JF(n), n=2. We introduce next an
auxiliary set S'  §°. Observe that if n>2, S’ =5°.

DEFINITION 8. For n22, §" :=8\{+i, £ (2 +2i)}.*

THEOREM 6. For n>2, E=0F(n) and } = An) = p(Q(n)) » the following equalities and
inequalities hold: :
(22) 1 <s=dimy (E) = dim,(E) = logA(n)/loglp| <2.¢
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PROOF. Assume n>2. Let v be the normalized positive eigenvector of the matrix Q=4+B

A B v v
correponding to the eigenvalue A . Then P=(B AJ verifies P(t) =/1(1_),). Therefore,
v v

according to Theorem 4 we have logA(n)/loglp| = dim, V, for any ¥ in S°. Now (22) follows

from Theorem 2 and the first inequality in Proposition 6.

Assume n=2. If V =(v,w,,,%,,,)" is the normalized positive eigenvector of the matrix Q,

corresponding to A then

(23) W= (v,0,v,,5,v5,,,0)

is a nonnegative eigenvector of the matrix Q for the eigenvalue A= )L(Z) and
w

A B\(W y
(B A)(WJ = A(g} Thus, logA/log|=dim,V, for all ¥ in S". To finish the proof of

(22) in the case n=2, it is sufficient to observe that for y €S°\S' ={i, +(2 +2i)}, by next
Theorem 7, card(V,) <, (cf. €) Th. 4) and therefore dim (V,)=0, QED.

THEOREM 7. If n=2 then card V, = card V.,=4; card V,,,=card V, ,=1.¢

PROOF. It will suffice to prove the theorem for i and 2+2i because of the symmetry of the
tilings (see Fig. 2 and recall that S°=-S°).
We have M(1,Y )>0. We also have,

29 M(n+1y,) =3, pM(ny,)
where vy, =1Ly, =4i,Y,=1+i,y,=2+i,y,=2+2i and Y, =-Y,.s forj=6,7,8,9,10.
M(n,y,) M(ny,)
If Y = : then YV = pY™=p'F® If = : then
M(n,Y,,) M(ny,)
Y Vi )
: 0 0
yrh = 0 5W=0"5" . Besides, Q(2)W = Q| Visi |=A where the v,’s are positive. Now
Voui Voui
0 0
we take advantage of the existence of the eigenvalue 1:
6 5 1
4 0 4
(25) yP =] 9|=|15]+| -6 |[=W' +V where V verifies Q V="V.
1 0 1
1 0 1

On the other hand observe that there are positive constants ¢, C, such that the vector W
defined in (23) verifies: ¢W < QW' < CW. Then, Q™"'5% = Q"QW" +V implies that
(26) AW +V Q™50 S ACW +V = CA'W + (1,4,-6,1,1)'.
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v M(n,y)) v
0 .
Thus, for n>0, cA"| Viu +V< . SCU N Vi [+V. We get from these
Vaui : Vasi
0 M(n,ys) 0

inequalities: M(n,i)=4, M(n,2+2i)=1 and M(n,y) = A"~ for y =1,1+i,2 +i.

To prove the theorem it only remains to show that 4 = M(n,i) = card(V;), (cf. €) Theorem 4
and Remark 1). From Fig. 4 we obtain

@27) y =iy =+ () =221 2+ 21— -2 - 20,

Now, d=-1=0-1=1- 2 2-3=3-4,d=-4=0-4 andd=4=4-0. Thus we have the
eight representations:

(28) ~ O(f+1)40=i.f04 where f=0,1,2,3.

They correspond to four infinite strings in the graph G(S°(2)) that represent four different
points, (see Fig. 2). Precisely,

(29) o,(f+1)40=__(2_'t_’.).]i, Vi__{éi,i*_zi,iﬂ,’é}_
5 ‘ 5 5 5 5
Finally, we obtain from (27) that ‘
(30) V. ={ 004}, 2 +54’ =0.04 = (2 +2i).40, QED.

THEOREM 8. If s = dim, 0F(n) then E = dF(n) is an s-sct. ®
PROOF. This is the content of f) Theorem 4, QED.

REMARK 2. E is not always a simple closed curve. In fact, dF(1) is a Jordan curve (cf.
[BP]) but 0F(2) is not (see [M]). This may be conjectured after looking at Fig. 2.

10. THE NUMBER SYSTEM (2,{0,1,i,1+i}). We show with a simple example that the
eigenvalue A in Theorem 4, i.e., the spectral radius of P and Q, is not necessarily of
geometric dimension 1. In other words, the eigenvector ¥ is not uniquely determined.

Let b=2, D={0,1,i,1+i}, L=[1i]. Then, D is a complete set of residues modulus 2 and
bLUDC L. Thus, D=D={0,£1,%i£(1+),+(1-i}.

-1- G(S°) 1+
- 1 A4 I = d=1-1 -1
VA VAV RV
-1+ d=i d=1+i - 1

ig.
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{.D} satisfies H) and H’) with F={x+iy:0<x<1,0<y<1}. Besides, D-D=
S={yeL:y=a-p,apeF} The family of representable numbers is the set of complex
numbers with nonnegative real and imaginary parts. The integers of the number system {5,D}
are the gaussian integers with nonnegative integral real and imaginary parts. In this number
system there exist numbers with four representations: (1+).0=0{I+7)=il=1.i.

Define m(d) as the number of ways d € D— D can be written as a difference of two ciphers.
So, m(0)=4, m(x1)=2, m(xi)=2, m(F(1+i))=1, m(x(1-i))=1. The graph G(S°), (cf. Def. 2),
where §° = {i 1,xi,+1+0),x(1- i)}, is seen in Fig. 5 with the correct number of arrows for
each d. That is, each arrow is repeated m(d) times. The matrix Q is now (cf. §4):

1 @ 1+ 1-

1 2011

i 0 211

@D 1+i 0010
1-i 0 0 01

Its spectrum is {1,2} and both eigenvalues are of geometric dimension 2. The eigenvectors are
(-1,-1,1,0Y, (-1,-1,0,1) and (1,0,0,0), (0,1,0,0)".
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