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1 Introduction

The notion of Bisimulation is an important tool for the study of the model theory of
classical modal logic and also plays a crucial role in Theoretical Computer Science (see
[6],(4], [1] and [2]). This notion was introduced by J. van Benthem in (1] under the name
of p-relation. Some very important results, as for example preservation and definibility
results, are proved using bisimulation as the fundamental tool. In this direction the work
[11] contains general results in the model theory of classical modal logic ML where the
role of the bisimulation is fundamental.

Routley and Meyer [7] provide a Kripke-style semantics for some Boolean relevant log-
ics using a ternary accessibility relation. This semantic is an adaptation of the relational
semantics for Relevant logics (see [10]). With a ternary relation defined on a set X we
can define two binary operations on the power set algebra P (X) : an operator * called
fusion, and a (relevant) implication = . The operation * can be considered as a genuine
modal operator of necessity. So, an extension of the Classical Propositional Cal alus PC
by means of an operator of fusion * can be seen as a particular polymodal logic. So, the
model theory of this type of logics is a particular case of the model theory for ML. But
the implication = is not a modal operator, and consequently the results of model theory
develop for ML are not directly applicable to logics with this kind of implication. Thus,
it is natural to ask if the questions typical of model theory of ML remain valid for some
Boolean relevant logics. We address some of these questions in the present work. If we
like to prove results on the model theory of BR following the lines of the results for ML,
we shall need an adequate notion of bisimulation. In [9] G. Restall introduces a notion of
bisimulation for some substructural logics, including some relevant logics. In this paper
we will apply this notion of bisimulation to the Boolean relevant logic BR.

In Section 2 we recall the necessary definitions and notions for the develop of this paper.
In Section 3 we define bisimulations and we show a characterization of bisimulation in
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terms of p-morphisms. In Section 4 we introduce the class of m-saturated models. In
general, the equivalence between two models does not always imply bisimilarity. We
prove that if the models are m-saturated then equivalence implies bisimilarity. We also
introduce the class of image-finite models and we prove that an image-finite model is
logically bisimilar to any other model. This result enables to us prove that the class
of models bisimilar to one image-finite model is contained in any class of models where
equivalence implies bisimilarity. In Section 5 we define the ultrafilter extension of a model.
The ultrafilter extension of a model is an m-saturated model that can view as a kind of
completation of the original model. The main result of this section is the characterization
of the equivalence between two models as a bisimulation between the associated ultrafilter
extensions.

2 Preliminaries

We shall consider a language £ with a denumerable set of variables Var = {po,p1, .., .-},
the binary connectives V, —, o, the unary connective — and the propositional constants
t and T. The connectives A, D and the constant L are defined as follows: p A q =
=(-pV—q),pD>qg=-pVgand L = —T. The set of formulas F'm is defined by the rules:

pu=ploVylo—Pleop|-p|t] T,
where p € Var and ¢,¥ € Fm.

Definition 1 A classical relevant frame, or frame for short, is a relational structure
F = (X,T,E), where E C X, T is a ternary relation defined on X and satisfies the
condition: Vz,y € X (z =y < Je € E such that (e,z,y) € T)..

Let F be a frame. We write for z,9,2 € X, (z,9,2) € T & (z,y) € T (2) & (y,2) €
T (z). The set of all subsets of X will be denoted by P (X). The set of finite subsets of
X will be denoted by Py (X). The complement of a set Y € X will be symbolized by Y.

A wvaluation is a function V : Var — P (X). Any valuation V' can be extended to the
set F'm as follows:

1 V(T)=X

2. V@t)=E

3. V(~p) =V (p)

4. V(pevy)=V(p)uV(¥)

5. Vipod)={z€ X 3n,y: (z,y,2) eT&z €V (0) &y €V (¥)}

6. Vipe—y)={re€ X Vy,z:(z,y,2) €T&yeV(p),thenz eV (¢)}.

A model is a pair M = (F,V) where F is a frame and V is a valuation on . Now,
we shall define the notions of vality on models and frames. Let F be a frame and let V'
be a valuation on it. Let ¢ € Fm and x € X. The formula ¢ is valid in M = (F,V) at
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z, in symbols M & ¢, if 2 € V' (). The formula ¢ is valid in M, in symbols M E ¢, if
E C V(). The formula ¢ is valid in F, in symbols F & o, if for any valuation V defined
on F, (F,V) E o.

Let K be the class of all frames. The Boolean relevant logic BR can be defined as the
logic in the language £ generated by the class K, ie., BR = {p € Fm: FE p for all F €
K}.. An axiomatization of the logic BR can be obtained taking the axioms given in [12]
for the relevant logic R plus any axiomatization of the Classical Propositional Calculus.

A Boolean relevant algebra, or BR-algebra, is an algebra (4,V ,—,0,,¢,1) such that
(A,V,=,1) is a Boolean algebra and

l.ao(bVec)=(aob)V(aoc)
2. (bVec)oa=(boc)V(coa)
3. a00=0
4. eca=a

5. a0b<cema<boe

Let A be a BR-algebra. The set of all ultrafilters of A is denoted by Ul (A4). The set
of all filters of A is symbolized by F; (A). Let F, H € F;(A). Define the set

FoH={zeA: foh< g for some pair (f,g)€ Fx H}.

It is easy to see that F o H is a filter of A. In the set Ul (A) define the ternary relation
TA by

(PQD)eTae PoQCP

Let E(A) = {P € Ul(A) : e € P}. By the results of A. Urquhart [12] (see also [3]), the
relational structure F (A) = (Ul(A),Ta, E(A)) is a frame, called the associated frame
to A.

The following results summarize known results on the relation 7. For a proof of these
results the reader is referred to [3], [10] or [12].

Theorem 2 Let A be a BR-algebra. Then:

1. Let F1, Fy € Fi(A) and P € UL(A). If Fy 0 Fy C P, then there exist Q,D € Ul (A)
such that 1 CQ, F5,C D and Qo D C P.

2. Leta,b€ A and P € Ul(A). Then aob € P if and only if there exit Q, D € Ul(A)
such thata€ Q, be D and Qo D C P.

3. Leta,b€ A and P € Ul(A). Then a— b € P if and only if for any Q, D € Ul(A)
such that, if PoQ C D anda € Q, thenb e D.

4. For all P, Q € Ul(A) and for oll E € E(A), Eo P C Q if and only if P=Q.
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All frame F has associated a BR-algebra. On the Boolean algebra (P (X),U,, X),
where € is the set complement, we define the operations * and = as follows:

UsV={zeX: T (z)nUxV)},

U=V={zeX:T)n{UxV) =0},

for allU,V € P (X). It is easy to check that the structure A () = (P (X),U,*,=,°, E, X)
is a BR-algebra.

Remark. We note that if M = (F, V) is a model, then the set Dy = {V () : ¢ € Fm}is
a BR-subalgebra. of the BR-algebra A (F), where V (po ) =V (p)*V (¥), V(¢ — ¢) =
V (¢) = V (%), and V (¢) = E. This fact we will use without mention in the rest of this
paper.

Let X, be the £-maximal consistent theories. The canonical frame is the struc-
ture F, = (X.,Te, E;) where (P,Q,D) € T, if and only if Po@Q C D, and E. =
{Pe X, :te P}. The canonical model is the model M, = (F.,V.) where V. is the
valuation defined by V, (p) = {P € X.:p € P}, for p e Var.

3 Bisimulations

In this section we shall define the classical relevant bisimulations. In classical modal
logic the notion of bisimulation is an important tool for establish an equivalence relation
between pointed models. Bisimulations are also know as strong bisimulations or zigzag
relations. We prove that two bisimilar models are the same theory, and that the notions
of p-morphism is a particular case of the notion of bisimulation.

Definition 3 Let F; = (X;,T1, E;) and F» = (X3, Ts, Ey) be two frames. A relation
B C X; x X is a bisimulation between F; and F3 if:

B0. If (a,b) € B, then a € E, iff b € Es.

Bi. If (a,b) € B and (a,2,y) € T3, then there exist ¢, y' € Xj such that (b,2',y') € Tz,
(z,2') € B and (y,y') € B.

B2. If (a,b) € B and (z,y,a) € Ty, then there exist z’,3’ € X, such that (z',y,b) €Ty
and (z,7') € B and (y,¥) € B.

B3. If (a,b) € B and (b,z',3/) € Ts, then there exist z,y € X; such that (a,z,y) € Th
and (z,7') € B and (y,y’) € B.

B4. If (a,b) € B and (¢',y/,b) € T, then there exist z,y € X; such that (z,y,a) € T1,
(z,2') € B and (y,y') € B. :

Let My = (F1, V1) and My = (%, V3) be two models. A bisimulation B between M,
and M, is a bisimulation between the frames F; and F; such that:

V. If (a,b) € B, then a € V; (p) iff b € V2 (p), for any p € Var.
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Let M; and M, be two models. Let x € X; and y € X,. We shall say that z and y
are bisimilar if there exist a bisimulation B between M; and M, such that (z,y) € B.
In this case, we shall write M;,zoM,,y. A bisimulation is said total if domB = X,
and rangB = X;. The models M; and My are bisimilars, in symbols M; <My, if there
exists a total bisimulation B between them.

Let M be a model. For any z € M, we define theset FM ={p € Fm:z €V (p)}.
We note that for each z € M, the set FM is a maximal and consistent theory.

Definition 4 Let M; and M, be two models. Let a € M; and b € M,. We shall say
that o and b are equivalent, in symbols a = b, if FM = be"‘z.

The next result said that all bisimulation B between two models M; and M, is
contained in the relation . This result was proved by G. Restall [9] but we shall give
there a proof for completeness.

Lemma 5 Let M; and My be two models and let B a bisimulation between them. Then
for any a € Xy and for any b € X, if (a,b) € B, then FM = FMz.

Proof. By induction on the complexity of the formulas. We only prove the cases for
formulas ¢ 0%y and ¢ — . Let (a,b) € B and a € V;(po). Then, there exists
T,y € X such that (z,y,a) € T}, z € Vi (p) and y € V; (¢). By clause B2, there exist
=,y € X, such that (z',1/,b) € T; such that (z,2') € B and (y,y') € B. By inductive
hypothesis , 2’ € V3 (p) and y' € V3 (3). Then, b € V(g o 1h).

Let (a,b) € Banda € V) (¢ — ). Weshall prove that b € Vs (¢ — ). Let 2',¢/ € X,
such that (b,2',y) € T; and 2’ € Vo (p). By clause B3, there exist z,y € X; such
that (a,z,y) € T such that (z,2') € B and (y,4) € B. By inductive hypothesis,
z € Vi(p), and since a € V; (¢ — ¢), we get that y € V; (). Again by inductive
hypothesis 3’ € V(). Thus b € Vo (o — ). The cases when b € Vo (w o) and
b € V3 (¢ — 1) are analyzed similarly, using the clauses B1 and B4, respectively. [

We shall investigate the relation between morphisms of models and bisimulations be-
tween models. The following definition is an adaptation of the definition given by A.
Urquarth [12].

Definition 6 Let (F;,V]) and (F,,V,) two models. A function f : X; — X is a p-
morphisms between the frames F; and Fy if it verifies:

PO. f~1(E,) C Ep.
P1. If (z,y,a) € Ty, implies that (f (z), f (v), f (a)) € Ta.
(

P2. If (f (a),2',y') € T>, then there exist z,y € X, such that (a,z,y) € T3, f(z) = 2/,
and f () = ¢/

P3. If (z',y/, f (a)) € T3, then there exist z,y € X; such that (z,y,a) € Ty, f(z) = 2’
and f(y) =y

A function f : X — X, is a p-morphisms between the models (F1, V;) and (Fs, Vo) if
is a p-morphism between the frames F; and F5, and verifies:
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Pj. Forallpe Var, Vi (p) = £~ (Va(p)).
In the next result we give an equivalent definition of bisimulation.

Lemma 7 Let Fi = (X1,Tv, E1) and Fo = (X3, To, E») be two frames. Let B C X1 x Xo.
Then the following conditions are equivalents:

1. B is a bisimulation between Fy and Fs.

2. There e:ciéts a ternary relation Tp C B? and Eg C B such that (B,Tp, Ep) is a
frame and the projections my : B — X; and mg : B — X, are p-morphisms.

Proof. 1= 2. Let us define the subset Eg of B, and the subset Tz of B3by Eg = Ey X E,
and

({1, z2) , (Y1, %2) , (21,22)) € T © (%1,91,21) € 1 and (22,92, 22) € T,

respectively. The proof of condition 3. of Definition 3 is easy and left to reader. Thus,
(B,Tp, Ep) is a frame. We prove that m; :B — X is a p-morphism. We prove PO, i.e.,
771 (Ey) € Ep. Let (z,y) € 77" (By) . then, m (z,y) = € Ey. By condition B0, y € E,.
So, (z,y) € Ep.

We prove P2. Let (my (21,22),%,2) € Th. Then, (z1,22) € B and (z1,¥1,21) € Th.
By the condition Bl we have that there exist ya,22 € X» such that (%2, Y2, 22) € To,
(y1,72) € B and (21, 2) € B. Then, (22,92, 22) € T2, ™1 (¥1,%2) = %1, and m (21,22) = %1.
The proof of P3 is similar.

2 = 1. We prove the condition B2. Let z1,¥1,21 € X; and z; € X3 such that (z1,29) €
B and (z1,91,21) € Ty. Since, 1 (21, 22) = T3, we get (m (z1,22) ,91,21) €Ty As my is a
p-morphims, there exists (y1,%s), (21,2) € B such that ((z1,22), (y1,92), (21, 22)) € T
and 7 (y1,%2) = 1 and m (21, 22) = z1. Then, (22,92, 22) € T> and (y1,y2) € B, and
(21,22) € B. The other conditions are proved similarly. |

Let F, and F, two frames. Let us consider a function f : X3 — X, We define a
relation By C X; x X, as follows:

(a,b) € By < f(a) =0b.

Proposition 8 Let F; and F; two frames and a function f: X1 — Xo. Let us consider
the relation By defined above. Then

1. Bj verifies Bl or B2 iff f verifies P1.
2. By verifies B3 iff f verifies P2.
3. By verifies B4 iff f verifies P3.

Proof 1. Assume that By verifies B2. Let (z,y,a) € Ty and let us consider b = f (a).
So (a,b) € By. Then there exists z/,y/ € X, such that (2',y',b) € T3, f(z) =z’ and
fy)=y" Then (f(z),f(y),f(a) €T.

The proof in the other direction is immediate.
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2. Suppose now that f verifies P2. Let f (a) = band (b,2',y') € Ty. Then (f (a),2,v') €
T, implies that there exist z,y € X, such that (a,z,y) € T}, f(z) = 2’ and f(y) = v
Thus, B3 is valid.

Suppose that B; verifies B3 and let (f (a),z’,y) € To. Let b = f(a). Then there
exist z,y € X; such that (a,z,y) € Ty, f(x) =2' and f (y) =vy'. So, P2 is valid.

The assertion 3. is analyzed similarly and left to the reader. |

The theory of a model (Fy, V1) is the set Th ((F,, Vo)) = {p € Fm: (F1, V) F ¢}.
We shall say that two models (Fy, Vi) and (F,, Vo) are equivalents if Th ((F, V1)) =
Th((]‘-z,VQ)) '

Corollary 9 A function f : (F1,Vi) — (F2,V2) is a p-morphism iff the relation By 1is
a bissmulation. Thus, for any x € X1, a and f (a) are bisimilares. If f is surjective then
Th({F, W) =Th({(F2, V).

Proof. It is immediate by the above results. ‘ ]

4 M-saturated models

It is well know that the converse of the Lemma 5 does not hold in general, because two
points may be equivalent without beging bisimilar. This fact brings about the following
cuestions. When two bisimilar points are equivalents. In other words, when the relation
~ is a bisimulation. In this section we shall introduce the class of models that have the
property of that for two models M; and M, the relation ~ between them is a bisimulation.
The principal class of models studied in this section is the class of m-saturated models.
The notion of m-saturation is well know in classical modal logic (see [4] and [6]).

Recall that a set of formulas I is said satisfiable in a model M if there exists z € X
such that M F; ¢, for all ¢ € I'. The set I is finitely satisfiable in M if every finite
subset of I is satisfiable in M. For any subset I' C F'm we shall write V (I') = [} V (p)

pel

and V (-I') = N V(=)

@€l

Definition 10 Let M = (F,V) be a model. We shall say that M is m-saturated if for
all sets I', A C F'm and for all ¢ € X we have:

M1 T (a)N(V (To) x V (Ag)) # @ for all Ty € Py (T) and for all Ay € Py (A), then
it holds

T a)N(V (D) x V(A)) # 0.

M2. T (a)N(V (To) x V(2Ag)) # 0 for all 'y € P (I') and for all Ag € Py (A), then
it holds

T(a)n(V(T) x V(-4)) #0.

Definition 11 A class of models K is called a Hennessey-Milner class if for M, My €
K, and for all z € X, y € X, if z &~ y, then My, 2 My, y. That is, the equivalence =~
is a bisimulation. The model M is said that has the Hennessy-Milner property if ~ is a
bisimulation on it.
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For classical modal logic the definition above is given in [4] and [6]. The most know
example of Hennessey-Milner class is the class Imf of all image-finite models.

Definition 12 A model M is image-finite ifforall z € X, T (z) and T* (z) € Py (X x X).
We note that this definition is not exactly to the definition given in [9].

Lemma 13 All image-finite model M is m-saturated. Thus, the class Imf is a Hennessy-
Milner class.

Proof. Let M = (X, T, E,V) be a image-finite model. We only to check the condition
M2. Let I',A C Fm, and a € X such that for any pair (I'o, Ag) € Py (I) x Ps(4),
T (a) N (V (To) X V (=Ag)) # 0. Since T (a) is a finite subset of X x X, then let T'(a) =
{(z1,%), -, (Tn,Yn)}. Suppose that

T(a) N (V (D) x V (=A)) = 0.

Then for any i € {1,...,n}, z; ¢ V(T') ory; & V (=A), i.e., for each i € {1,...,n} there ex-
ists a pair (¢;,%;) € I' x A such that (2;,4;) € (V (¢:) X V () . Let us consider the sets
I‘KO = {9917 >(pn} and AO = {Q})l) alpn} By assumption, T (a‘) N (V (FO) xV (_'AO)) 7é @1
i.e., there exists some i € {1,...,n} such that (z;,3) € (V (I'c),V (—A)), which is a con-
tradiction. Thus, M2 is valid. The proof of the condition M1 is similar and left to the
reader. |

Theorem 14 Let M; and My be two m-saturated models. Let a € X; and b € X;. Let
us consider the relation (a,b) € B < a~b. Then B 1is a bisimulation.

Proof. Let a € X; and b € X3 such that Fj\’“ = FbMQ. It is clear that the conditions
B0 and V are satisfied. We shall the check the conditions B2 and B3. The proof of the
conditions B1 and B4 are similars and left to the reader.

B2. Let (z,y,a) € Ty. Let us consider the sets F2** and F;"*. Since

FMioFM = {poyp:pe FM andp € FM } CFM = R,

then for all (p,9) € FM x FMi be Va(pod), ie, Ty (0)N(Va(p) x Va(4)) # 0. So,
for all Ty € Py (FM1) and for all Aq € Py (FM) we get,

T3 (b) N (V2 (To) x V2 (Ag)) # 0.

Since M, is m-saturated, 75+ (b) N (Va (FM) x V2 (FM)) # 0. Then there exists ',y €
a3 such that (¢/,y,b) € Ty, FM = F* and FM = F).

B3. Let (b,2',/) € Tp. Then, F o FA2 C F)'2. Let ¢ € FJ' and ~ € F)".
Then, b ¢ V, (¢ — ¢). This implies that a ¢ V; (¢ — ). It follows that there exist
z,y € X, suchthat (a,z,y) € Ti, z € Vi (p) andy € Vi (—). Thus, for all Ty € Py (FI2)
and for all Ay € Py (F;}”z) we have Ty (a) N (Vi (To) x Vi (—Aq)) # 0. Since M, is m-
saturated,

Ty (a) N (Vi (FO") x Vi (mF)2)) #0.

Then there exist z,y € X; such that (a,z,y) € T3, Fﬁ"” = FMt and F;}""’ = FyMl. |
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Corollary 15 The class Sat of all m-saturated models and the class Imf all image-finite
models has the Hennessey-Milner property.

A very important property of the class Imf is given in the next result.
Theorem 16 All image-finite model is logically bisimilar to any other model.

Proof. Let My = (X1, T1, E1, Vi) be an image-finite model. Let My = (Xy, Ty, Eo, V)
be any other model. We prove that the relation ~ between M; and M, is a bisimulation.
Let a € M; and b € M, such that a = b.

B3. Let (b,z',y') € To. Let us consider the sets F* and F;}""’ and let us consider
finite subsets

Lo = {¢1, .., n} € FL™ and Ag = {91, ..., %} € F°

Let o = o1 Ao Ay and ¢ = 91 V ... V4. Then, 2’ € Vo (p) and y € Vo (¢). This
implies that T3 (b) N (Va (), Va (- (%)) # 0, ie, b ¢ Vo(p — —¢). Since a = b,
a ¢ Vi (¢ — —9). It follows that there exist z,y € X, such that (e,z,y) € T1, = € V; (p)
and y € Vi(¢). Then for any 'y € Py (F;,w"’) and for any Ag € Py (F;,Vtz), we get
Ty (a) N (Vi (To) x Vi (Ao)) # 0. As M; is image-finite, then by Lemma 13 M, is m-
saturated. It follows that

Ty (a) N (Vi (F2) x VA (F%)) 0.

This means that there exist z,y € X; such that (a,z,y) € Ty, FM = F:Y’Z and FyMl =
Fb
y
B4. Let (2',9',b) € Ty. As above, it is easy to prove that

T (@) N (Vi (F)2) x Vi (=F")) # 0.

So, there exist z,y € X; such that (z,y,a) € Ty, FM = Fz’}"z and FyMl = F;}”"’.

B2. Let (z,y,a) € Ty. Since M); is image-finite, then Ty (a) = {(z1,11), ..., (Zn, Yn) }-
We prove that for each 1 < ¢ < n there exists a pair of formulas (¢;, ;) (called the
characteristic pair of (z;,y;)) such that for all 1 < 5 < n,

T~z ez €Vi(d) andys =y &y € Vi(pi).
Indeed. For each 7 # j such that z; % x; there exist ¢;; € F'm such that z; € Vi (dy)

and z; ¢ V;(¢i;). Then z; € Vi | A\ ¢y; | = Vi (¢4) and z; ¢ V4 () for all z; % z;. Then,
i
T; 2 T; & 1; € Vi (¢4) . Similarly, there exists ¢; € Fm such that y; = y; & y; € Vi (¢;) .
Let us (¢z,p,) be the characteristic pair of (z,y). Then a € Vi (¢, 0¢p,). Since
a=b be Va(p,0p,). Consequently there exist =,y € X, such that (z/,v/,b) € T,
z' € Va(p,) and ¢ € Va(p,). We prove that FM = F/* and FM = Fzﬁ"z. Let
a1, ap € F'm such that 2’ € Va(e) and v € Vo(as). Since, @ € Vo (g Ay,) and
v eValme Agy), b€ Va((an Apz)o(azApy)). So,a € Vi((arAws)o(azAepy)). Then,
there exist &y, ky € X; such that ky € Vi (01 A py), ko € Vi (02 A y) and (ky, ks, a) € Ty.
But this implies that k; ~ z and kp =~ y. Thus, z € V; (a;) and y € V5 (ap) . We conclude
that z = 2z’ and y = ¥/.
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Bl. Let (a,z,y) € T1. As above, let (¢., ¢y) be the characteristic pair of (z,y). So,
z € Vi(p:) and y € Vi (p,) . Then a ¢ Vi (w; — —¢py).Since a ~ b, b ¢ Vo {p: — —py).
This implies that there exist z',y’ € X, such that (b,z',y') € T3, o' € V2 () and
y € Va(p,). We prove that FM = FJ® and FM = F)™. Let oy, ap € Fm such
that 2’ € Va(oq) and 3 € Va(ag). Then, since b ¢ Va((ea Ape) = (2 Apy)), a &
Vi ((a1 A @z) = = (g A @y)). So, there exist ki, ko € X such that &k € Vi(ay Ags),
ky € Vi (a2 A @) and (a, ky, kg) € Ty Tt follows that FM = F2' and FM = F".

Thus, =~ is a bisimulation between M; and M. ' [ |

Let Int be the intersection of all maximal Hennessy-Milner classes.
Corollary 17 B (Imf) = {N : 3IM € Imf : M<=N} C Int.

Proof. Let M € B (Imf). Then there exists an image-finite model M’ such that M
and M’ are bisimilars. Let K be any maximal Hennessy-Milner class. By above theorem,
M’ is bisimilar to any model of K. So, K U {M'} is a Hennessey-Milner class. Since K
is maximal, M’ € K. Hence, K = B (K) and M € K. Thus, M € Int, and this implies
that B (Imf) C Int. |

Problem: When Int CB (Imf) 7

5 Ultrafilter extension of a model

In this section we define the ultrafilter extension of a model. This construction is im-
portant because give a characterization of the equivalence between models by means of
ultrafilter extensions.

Let F be a frame. The ultrafilter extension of F is the frame
Ue (F) = (UL(P(X)), T, Bu) »
where
e Ul(P (X)) is the set of all ultrafilters on X,
e T, is a ternary relation defined on Ul (P (X)) by:
(P,Q,D)eT, & PxQC D,
where PxQ = {UxV :U € P,V € Q}andUxV ={z € X : T  (z) N (U x V) # 0}
o E,={PecUl(P(X)):Ec P}

In other words, the ultrafilter extension of F is the frame associated to classical relevant
algebra P (X).
Let M = (F,V) be a model. The ultrafilter extension of M is the model

Ue (M) = (Ve (F), Vo)
where the valuation V,, is defined by

Vu(P)={PeUL(P(X)):V(p) € P},
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for any p € Var.
Given an element z of a set X, it is easy to see that the collection

H(z)={UCX:zeU}

is an ultrafilter of P (X), called the principal ultrafilter generated by z. A important
property the ultrafilter extension of a model is that is m-saturated.

Theorem 18 Let M be a model. Then

1. For any p € Fm, V,, (p) = {P € UL(P(X)): V (¢) € P}.
2. Foranyrz € X, z~ H(z).

Proof. 1. The proof is by induction on the complexity of the formulas. We consider only
the case ¢ — %. The other cases are analyzed similarly and left to the reader.

Let P € Ul(P(X)) and ¢,% € Fm such that V (p — 1) € P. We prove that
PeVi(p—1). Let QD e Ul(P(X)) such that (P,Q,D) € T, and Q € V, (¢). By
inductive hypothesis, V (¢) € Q, and since V (¢ — ¢)) € P, then we get V() e D.
Again by inductive hypothesis, D € V,, (y). Thus, P € V,, (o — 9).

Assume that V (¢ — o) ¢ P. We prove that P ¢ V, (¢ — ). Let us consider the set
P+ {V (¢)} and we prove that the set

= (F«{V(ghu{V(-¥)}

has the finite intersection property (fip). Suppose the contrary, i.e., § € I'. Then there
exists U € P such that (UxV () NV () = 0. So UV (¢) C V(3), and this
implies that U C V (p) = V() = V (p — ¢). It follows V (¢ — ) € P, which is a
contradiction. Then I' has the fip. Then, by Ultrafilter theorem, there exist an ultrafilter
D on X such that I' C D. By Theorem 2, it is follows that there exists @ on X such
that PxQ C D, V (p) € Q and V (=) € D. By inductive hypothesis, Q € V, (p) and
D ¢ V.($). Thus, P ¢ V, (9 — ).

2. It follows immediately from 1. [ ]

Theorem 19 Let M be a model. Then U, (M) = (U, (F),V,) is a m-saturated model.
Proof. We prove M1. Let us consider ', A C Fm and P € Ul (P (X)) such tha’
T (P)N (Va (To) x Vi (Ao)) # 0
for any I'y € Py (') and for any Aq € Py (A). Let us consider the sets [V = {V{p):peT},
A"={V (¢) : ¢ € A}, and the filters F (I") and F (A’) in P (X) generated by I' and A’,
respectively. We prove that
F{I)+«F(A")CP. (1)

Let U € F(I") and V € F(A"). Then there exists {¢1,... ,0n.} € Tand {¢y,... 9} C
A such that

UrVCV(otAAp)x V(i A A =V (01 Ao Agn)o (Y1 AL Ad).
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By assumption 7.1 (P) N (Va (@1 Ao Awn), Vu (1 AL  Aty)) # 0. So, there exist
Q',D' e Ul(P(X))suchthat Q'«+D' CP,Q € Vy (1 A...Agp)and D" € V, (Y1 A .. A
Y. It follows, V(o1 A ... Apy) € @ and V (Y1 A...Avy) € D'. This implies that
V(i A N @n)o (1 A... Aypy) € P. Therefore, (1) is valid. By Theorem 2, there
exist Q,D € UL(P (X)) such that Q * D C P, IV C Q and A’ C D. Thus, T;' (P) N
(V. (T) x V() # 0.

We prove M2. Suppose now that

T (P) N (Vu (Fo) , Vu (mA0)) # 0

for any I’y € P (I') and for any Ag € Py (A). Let us consider thesets TV = {V (p) : ¢ € T'},
=A"={V (-¢) : ¥ € A}. We prove that

(P %) U-A 2)

has the fip. Suppose the contrary. Then there exist U € P, V (¢1),...,V (pn) € I and
V (=1), ..., V (—9) € A’ such that

(U 5V () (1. OV () AV () MOV (i) = 0.
This implies that ’ |
UC(V(p)N..nNV(pgn) =V (V. ...Vi)

=V (o1 Ao App) =V (1 V.. V)
=V (@1 A .. Aipn) = (1 V ... VYi)) € P.

But by assumption, there exist @, D € Ul (P (X)) such that PxQ C D,V (p1 A.... An) €
Qand V(= (1 V..Vhy)) € D. Thus, V((p1 A ... Apn) = (1 V... Vo)) ¢ P, which
is a contradiction. So, (2) is valid. Then by the Ultrafilter theorem and Theorem 2,
there exist Q,D € Ul (P (X)) such that PxQ C D, I" € @ and -A" € D. Thus,
Tu (PYN (Va (T) x Vi (=4)) # 0. =

As a consequence of the above result we have the mentioned characterization of the
equivalence between models by means of ultrafilter extensions.

Theorem 20 Let M and M’ be two models. Let a € M and b € M'. Then
M, a =~ M'b if and only if U, (M), H (a) «U. (M'), H (b).

Proof. The proof follows by the following observation.
Let a € M and b € M. It follows by the assertion 2 of Theorem 18 that

M, a~ M, bif and only if U, (M), H (a) ~ U, (M), H (),

and since both U, (M) and U, (M') are m-saturated by Theorem 19, it follows from
Theorem 14 that

U, (M), H (a) ~ U, (M'), H (b) if and only if U, (M), H (a) =U. (M'), H (b)..

From these remarks we have the proof of the Theorem. n
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