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Abstract

In this paper we define and develop an algebraic structure associated with the
concept of systems of relevant information (SRI), which is a variant of the semi-
lattice semantics proposed by A. Urquhart in [6]. The propositional relevant logic
RP is introduced as the syntactical counterpart of the SRI-structures. This logic
has a primitive-recursive decision procedure. The idea behind this logic is that of
“Relevant Deduction”, in which each premise is a block of information relevant to
the conclusion. Finally, we prove that the class of SRI-structures is a sound and
complete semantics for the logic RP.

Introduction

Relevant Logic was initially developed by A. Anderson and N. Belnap in axiomatic terms
throughout their systems R and E (cf. [1]). There exists several semantical approaches
to these logics (cf. [5]). As pointed in [4], however, there is no natural semantics for these
systems.

We propose here the semantics of systems of relevant information (SRI), based on
the semilattice semantics, introduced by A. Urquhart for the systems R and E. The
underlying idea is that we can only infer a formula o from a state of information which is
relevant to . (From the classical point of view, a state of information is merely a set T’
of formulae from which we deduce the formula a.) We redefine this semantics throughout
the SRI-structures, formed by states of information and introduce the relation < which
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works associated to the following idea: one state of information X is logically stronger
than another state Y (written X < Y) if, in the intended interpretation, there exists one
formula o (associated to a basic block of information in Y) which can be (classically)
derived from the set T' of formulae associated to the state X.

Additionally, the relation of relevance I is defined as follows: X I+ o means that the
state of information X is relevant for obtaining the formula . This semantics corresponds
intuitively to the idea of minimal set of premises needed to infer a formula a.

On the other hand, another important problem related to the axiomatic approach for
the relevant logic is the decision problem. It was proved in the literature that several
fragments of the systems E and R (and other related systems) are decidable. It was
finally proven that neither R nor E have decision procedures (cf. {2]).

In the present approach to Relevant Logic, having in mind the central problem of find-
ing a decidable Relevant Logic motivated by pragmatic reasons associated to automated
deduction in Artificial Intelligence, we are primarily interested in investigating a decid-
able logic with relevant characteristics, namely RP, which functions as a sort of relevant
filter of the classical logic. This logic, based on [3], is associated with the idea of relevant
deduction. So, the system RP is a subsystem of the classical logic which accepts only
the classical deductions and where, in intuitive terms, there are no unnecessary premises.
So, valid formulae in RP are classically valid formulae which are additionally relevantly
deduced from the empty set of premises.

We prove that the class of SRI-structures is sound and complete for the logic RP.
We thus conclude that there exist decidable Relevant Logics with “natural” semantics in
the sense proposed by Pogorzelski in [4].

1 Systems of Relevant Information

In this section we introduce the central concept of the paper: Information systems en-
dowed with a relation of relevance.

Let us suppose that we have a formal language L. for knowledge representation. For
the sake of simplicity, we will assume that L is a (classical) propositional language defined
over the signature

Y={p | ieN}U{~,—=,AV}

From now on, £c will denote the classical propositional logic over the language L, and
E=c will stand for the (semantical) consequence relation associated to £¢.

In order to define an information system S over L we will briefly analyse the main
characteristics that we intend to have in S:

e The elements of S will be called states of information (from now on s.i.).

e One si. X may contain more information than another s.i. Y in this case, we write
Y < X; the relation < should be a partial order.

e Given X and Y, we can define the minimum s.i which contains more information
than X and Y (the supremum or concatenation of X and Y).

e Given X and Y, we can define the maximum s.i which contains less information
than X and Y (the infimum or common information of X andY).

e There exists the null s.i. 0.
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e Given X and Y, there exists the maximum state Z with less information than X
and without common information with Y (the complement of Y in X).

e There exists atomic pieces of information, called blocks of information (from now on
b.i}, corresponding to the formulae in L.

e Each X is obtained as a finite concatenation of b.i.’s.

e There exists a relation =< such that X =< Y means that the s.i. X is logically stronger
than the s.i. Y.

Formally, we define the following:

Definition 1.1 A System of Relevant Information (SRI) is a structure S = (s], <,0, x)
such that:

(i) (IS], <,0) is a distributive lattice with minimum 0; elements in |S| are states of
information (s.i.).

(i) For all X,Y € |S| there exists X — Y = Maz{Z <X | ZNY = 0}.

(iii) For all o € L. there exists a si. X, such that & = g (in L) ift X, = Xp, and
o # 3 implies that X, £ Xg. Each X,, is called a block of information (b.i.).

(iv) For each s.i. X there exists b.i. X,,,...., Xs, such that

X=X U UX,..

(v) The relation < C |S|x |S| satisfies: X < X, iff, for every finite sequence Xy, ,....,
Xa, of bi’s, if X = X, U---UX,, then oy, ..., o, = . Furthermore X < XU UX,,
iff there exists 1 < ¢ < n such that X < X, N

It is easy to see that the decomposition X = X,, U--- U X,, is unique up to (classical)
logical equivalence, and each b.i. is an atom, that is: X < X, implies that X = X, or
X = 0. Therefore the relation =< is well defined. On the other hand, if X and Y are
given by

X=X U UX, UXg U---UXp,

Y=XpU - UXp UX, U UX,

then X —Y =X, U---UX,,.
A SRI induces a relevance relation as follows:

Definition 1.2 Let S be a SRI. Given a s.i. X and a formula o, we say that X is
relevant for o, denoted X I+ «, if the following conditions hold:

(1) if o is a literal then X F ¢ if X x X, and Y £ X, for all ¥ < X (bere, Y < X
means that Y < X and Y # X);
(2) X IFa—piff X UX,IFBand X U X_plF —o
B) X FavBiff XUX oIFFand X UX gl o
4 XUYFaABiMfEXIFa, YIFB, X4AY —XandY £ X -V,
(B) XUY F~(a=B) il X ko, YIF-3, X4Y —XandY £ X - Y,
6) XUY Ik =(aVB) WX -0, YIF-8,XAY -XandY £ X ~Y;
(1) X Ik =~{aAB) iff X X, IF—Fand X U X - e
@ XF-—aiff XIFa. B
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Is immediate to see that the formula aVj is regarded as equivalent to (ma—P)A(—f—a).
This eliminates asymmetries, as we will see on the next sections.

Tt is interesting to note that a state of information X is constructed as a finite concate-
nation of blocks. Since each block is associated to a formula, X is associated to a finite
set of formulae representing the informational content of X. Observe that the content of
X is not merely given by the associated set of formulae, but the number of blocks defining
X is also considered. Then, the state of information Xo U Xp is different from the state
of information Xang-

2 The relevant system RW

We begin now our study of the logical (syntactical) counterpart of the Systems of Relevant

Information. In this section we will study a simple relevant consequence relation, called
RW , introduced in [3].

Definition 2.1 Given a set I' U {a} of propositional formulae, we say that I' Erw o (a
is a consequence of I' in the logic RW) if the following is true:

()T f=¢ a, and
(2 forall e, T — {8} fco. B

For example: a, a— 8 =rw B but a, a—f Erw . An obvious consequence of Definition
2.1 is the following:

Lemma 2.2 Let I'U {a, 8} be a set of formulae. If I' =pw o and Ec a < §, then
I'iE=pw . O

A number of properties of RW can be found in [3], for example:
I, a =gw B implies that ' Frw a—0

(deduction theorem). The converse is not true in general:
o Erw B—a but o, 8 Frw o

In RW the principle o, 8 |=rw @A is not valid in general: by Lemma 2.2, it is immediate
that

a,a/\ﬂ %RW a A (a/\ﬂ).
On the other hand, RW does not satisfy the CUT rule:

I'kpw o, a,AEgpw § implies that T, A Egrw B.
In fact,

{p,p—q} Erw ¢, ¢,{a—p} Erwp but {p,p—q,q—p} FrW P-

This example suggest the following:
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Proposition 2.3 Let Crw be the consequence operator of RW, and let " be a set of
formulae. If Crw (I") # 0 then there exists no formulae v, 8 € T, v # 8, such that v ¢ 8.

Proof: Let o € Cpw(I') and suppose that 7,8 € T', v 5 3, such that v ¢ 8. Since
I' Frw a we obtain I' |=¢ @. On the other hand, v F=¢ 3 implies T' — {8} ¢ a, a
contradiction. [

Corollary 2.4 Let I' be a set of formulae. If there exists formulae 7,5 € T, 7y # 8, such
that v l=¢ 3, then Crw(0)=0. O

Corollary 2.5 If Crw () # 0, then Crw (Crw (I")) = 0.

Proof: Let A = Caw(I') # 0, and let @ € A. Then I" Fpw « and T’ =g ——a. Since
a,--a € A and a |=¢ =« we infer, by Corollary 2.4, that Crw (A) = Caw (Crw (T')) =
0. O

Corollary 2.6 The consequence operator Cry is cyclic.

Proof: Let I" be a set of formulae. If I' = @ then we obtain, by succesive applications of
the operator Crw, the following cyclic sequence:

@,T,@,T, ey

where T = Crw (D) is the set of tautologies of RW (= set of tautologies of the classical
logic £¢). If 0 # ' # Crw(A) for all A, we obtain, by succesive applications of the
operator Crw, the following cyclic sequence:

I, Crw(T),9,T,0,T,....

Finally, if @ # I = Crw(A) for some A then we obtain, by succesive applications of the
operator Crw, the following cyclic sequence:

rerTer,.. O

As a direct consequence of Definition 2.1 we have that the tautologies of RW coincide
with the clasical ones. In order to circumvent this difficulty, a modification of the logic
RW was proposed in [3], so as to obtain a system that we call RW1. This system is
defined by restricting the derivability of formulae of the form a—g ezactly to the cases
determined by the converse of the deduction theorem, that is:

TalErw B i T Frwi a—p.
The logic RW1 has its difficulties, however: for example
= '=RW1 a—f but —a %RWI —f—a.

This shows that RW1 only works in the implicative fragment of RW.
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3 The system RP

Finally we are ready to introduce our main logical system, the logic RP. 1t is obtained
as a refinement of the logic RW,and it is defined recursively.

Definition 3.1 The logic RP is defined as follows: let TU{a, 8} be a set of formulae; then

()T =rp o iff T Erw o (if o is a literal);

(2) T =pp a—p if T,alrpfandl, -0 E=grp o

(3) T *:RP aVp ff T,—o ’ZRP B and r,=g }=Rp Q;
(4)FUA l=RpOz/\,8 iff FFRPQ,AFR}Dﬁ,Fb&c"/fQI’ all

veA-Tand Ay forally €T —A;
(5)TUA Epp ~(a—f) iff T'kFrpa, A k=rp -8, T e 7y for all

veA—-Tand A gy forally €l — 4y
(6) TUA }=Rp -1(a V,B) iff T 'ZRP I, A b‘—‘Rp “lﬂ, r k’éc Y for all

veA-Tand Ay forally €T — A,

(1) T Erp ~(a A B) iff T,akgrp-fandT,fFrp 0;
(8) r }—:Rp T iff T ‘=Rp o N

Is RP a relevant logic in the sense stated in the Introduction? The next proposition gives
a positive answer to this question.

Proposition 3.2 Let ['U {a} be a set of formulae. Then
I'l=gp o implies that T Erw .
Proof: By an easy induction on the complexity of . O

Remarks 3.3 (i) It is clear that the converse of Proposition 3.2 is not true:

o l=rw B—a but o fErp B

because «, § Frw a.
(i) Clause (3) in Definition 3.1 means that formulae of the form o V § are considered as
(ma—f) A (mf—a). This eliminates asymmetries: let’s consider the alternative clause

(3 Tl=ppaVvp iff T,-alrefB

in the place of (3). This implies that p |=rp pV ¢ (because p, —p |=rp q) but ¢ FrP PV Q
(because ¢, —p Ferp ¢). On the other hand, clause (3) guarantees a desirable symmetrical

behavior of =pp: p Frp PV g and g FErP PV ¢
(iii) Analogously, if we substitute (2) in Definition 3.1 by the alternative clause

(2) T rpa—p iff T,al=rpp
we obtain: —p =gp p—¢ but ¢ ferp p—g, as long as clause (2) produces

—p rp p—q and g FErP P

This is an interesting result from the relevantist point of view: the falsehood of p does
not imply that p is relevant to every ¢. In the same vein, from ¢ we would not infer that
any p is relevant for . W
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4 Substitutions in RP

We briefly analyse the effect of substitutions in the logic £P. We will prove that changing
formulae by (classically) equivalent ones on the left-hand side of =gp have no effects, but
the right-hand side of |=pp is susceptible to substitutions.

Proposition 4.1 Let I' U {a} be a set of formulae. For each 8 € I consider a formula
@' such that § is (classically) equivalent to 3, and let

I'={p | peT}
Then I' F=gp « implies that I =gp a.
Proof: Immediate, by induction on the complexity of . O
Corollary 4.2 (Deduction theorem) Let I' U {«a, 3} be a set of formulae. Then
I'Eppa—f fiT,al=rp B and T, -8 =gp ~a (iff T E=pp 7f—-a).
Proof: Straightforward. [J

On the other hand, Proposition 4.1 is not longer true if we consider the right-hand side
of the relation f=pgp:

plrpp but plrppA(pVa).
Moreover, in general we cannot substitute a propositional variable for another formula
in a deduction. Let’s denote by a[f/,] the formula obtained from a by the substitution
of every occurrence of a propositional variable p in o by a formula 8. If I' is a set of

formulae, then we define
F[B/p] = {'Y{B/p] | y€T}

Proposition 4.3 Let TU{a} be a set of formulae, p a propositional variable occurring in
e, and let g be a new propositional variable. Then I' }=pp « implies that T[PA®V9 /] bpp
a[p/\(pvq) /o).

Proof: Since p is (classically) equivalent to p A (p V q), then g is (classically) equiva-

lent to PAPV9/ ) for all 8 € I. If T =pp a then, by Proposition 4.1, we infer that

T{prPva) /] l=pp a. The rest of the proof is an easy induction on the complexity of a.
O

5 Completeness of RP

In this section we will prove that the relevant logic RP corresponds to the syntactical
counterpart of the SRI-structures. That is, the inferences in the context of systems of
relevant information correspond exactly to the deductions in the logic RP. This shows
that RP has a natural semantics given by the class of SRI-structures.

Theorem 5.1 (Soundness) Let I' = {ay, ..., 0, } be a finite set of formulae, and let «
be a formula. Then:

if Xg, U---UX,, Fa inevery SRI-structure S then T =ppa.
In particular,

if O0lFa inevery SRI-structure S then |=gp a.
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Proof: Let {0y, ...., o, @} be a finite set of formulae such that, for every SRI-structure,
Xg, U+ U X, IF . Let’s define a canonical SRI-structure S as follows: let

Le={[6] | BeL}

be the Lindembaum algebra of £¢, where [3] = {y € L | £ =7 in £c} is the equivalence
class of the formula 8 € L in L¢. Define |S| = Pf(Lc), the set of finite subsets of Lc.
For each 8 € L set X3 = {[8]}. Then, the lattice (|S|, C,0) satisfies conditions (i)-(iv)
of Definition 1.1. Finally, set

{['Yl]a ey ['Yk]} < {[:61] ey [ﬁm]}

iff there exists 1 < i < m such that 1, ..., 7 Fc Bi. It is easy to see that condition (v) of
Definition 1.1 is also satisfied, so S = (|S|, €, 0, <) is a SRI-structure. By hypothesis,
Xoy U+ UXa, IF ain S. A straightforward induction on the complexity of o shows that

{eay o on} FErp o O

. Theorem 5.2 (Completeness) Let I' = {ox, ..., @} be a finite set of formulae, and let
a be a formula. Then

if TErppa then X, U---UX, IFa inevery SRI-structure S.
In particular,
if lrpa then OlFa inevery SRI-structure S.

Proof: Let {a1,....,an,a} be a finite set of formulae such that ay, ..., on =pp @, and
let S be a SRI-structure. By induction on the complexity of o we will prove that
KXoy U UXq, IF a If ais a literal, then ay,...,0m E=rw @, thus it is immediate
from the definitions above that X, U --- U X, IF a. Assume that the result is valid for
every formula o with complexity < k (k > 0), and consider o a (non-literal) formula with
complexity k + 1.

Case 1: o = B—v. Then oy,..,an, F=rp « implies that os,..,0n,8 F=rp 7 and
Qi ..., 0, —y Erp -0 and thus, by induction hypothesis,

Xy U - UXo, UXglhy and  Xo, U+ U Xa, UXoy I 6.

The cases o = 3V v and o = —(8 A ) are proven analogously.

Case 2: o= B3 A~. Then {B1,..., 5:} U {m,.--,7s} F=rp @ implies that:
(i) {B1, - B} Ere B
(i) {71, ¥} FErP Y3
(iii) {Bi, ..., Br} e & for every 6 € {m, ..., s} — {b1, ..., 5-}; and
(1) {70, 7e} P & for every 8 € {Br, o Br} = {71, 25)-

By induction hypothesis and the definitions above it is straightforward to see that Xg, U
c U Xg UX,y, U---UX, IFa. The cases « = —(8—7) and o = ~(B V ) are treated
similarly. The case o = ——0 follows by induction hypothesis. [
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6 Concluding Remarks

We have introduced a decidable logic, based on relevance criteria. The natural semantics
for this logic corresponds to systems of information equipped with a relevance relation.
Note that, whereas the traditional approaches to relevance (as the systems R and E)
use a new non-classical connective = (relevant implication), in RP no new connectives
are introduced. The idea of relevance in RP is just a metalinguistic one, related to the
demands for a method for checking (classically) redundant information.
As questions deserving further investigation we can mention:

* to generalize this techniques to other non-classical decidable logics, in order to obtain
a filtering of “relevant” formulae;

¢ to extend the usual notion of algebraic semantics in order to define structures over
sets of formulae in the place of structures over formulae (as in the case of Lindembaum
algebras). This possibility was already considered in [6].
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