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Abstract

In 1956, R. Ashby considered as models of dynamic systems certain functions
we shall call Ashby transformations. In this paper we prove that the interaction
machines defined by P. Wegner in 1996 are equivalent in their expresive potential
to particular Ashby transformations, thus showing that there exists a relationship
between two disciplines which, up to now, have seemed to ignore each other. They
are the theory of computer science and system theory, the latter being capable of

becoming a basic part of the former.

1 Introduction

Computational technology has developed significantly in its theoretical fundamentals

since its birth up to the present.

The notion of algorithm arose in response to foundational questions in mathematics.
Computer science, which arose with de advent of computers, adopted this notion as

fundamental paradigm.

Electronic digital computers appeared in 1945. They computed one step at a time and
they were limited to a finite number of steps and to a finite number of instructions. These
computers are the embodiment of the Turing machine. But, at the present, computer
science deal whith important process expresions which do not qualify as algorithms [5].
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130 MANUEL FIDEL AND MARTIN FIGALLO

An operating system, similar to any nonterminating reactive processes cannot be mod-
elled by algorithms. The same happens with concurrent processes.

The development of a conceptual framework and formal theoretical foundation for
object-oriented programming has proved to be a hard task owing to the fact that object
observable behaviour cannot be expressed by means of an algorithm.

The algorithmic specifications of certain problems, in which it is necessary to handle
interactively variable factors, are many and quite complex, supposing that such speci-
fications exist. Therefore, algorithmic computation is insufficient to model interactive
behaviour.

In the search of a more powerful computing mechanism, capable of modeling present-
day computers, P. Wegner introduced interaction machines [9]. They are simple extensions
of Turing machines, but they have both observable behaviour and formal properties which
are completely different from those of Turing machine.

Wegner proved that the observable behaviour of interaction machines, unlike that of
Turing machines cannot be specified by mathematical models.

Interaction machines can model the behaviour of objects in object-oriented programs,
since interaction is the key notion which makes object behaviour more powerful than that
of procedures.

Turing machines have a limited power because they compute an output from an initial
input on the tape and cannot interact with an external environment during a computation.

This characteristic of Turing machines is the same that von Bertalanffy, founder of
general system theory, observed in the systems studied by physicist. von Bertalanffy
noticed that these systems were closed: they do not interact with the outside world,
that is to say with the context. When physicist makes a model (for example, a model
of an atom), he assumes that all the mass, particles and forces that act or affect the
system are included in the model. This makes it possible to calculate future states with
perfect precision since all the necessary information is known. However, as a biologist, von
Bertalanffy knew that supposing such a thing was imposible for the majority of practical
phenomena.

He noticed that real systems are open, in the sense that they interact with their
environments and can acquire new properties, thus resulting in a continuous evolution.
This characteristic of real systems is present in computational systems too.

2 Preliminaries

In this section we shall review some basic notions and some result on formal lan-
guages, phrase structure grammars (or type 0 grammars), Turing machines and Ashby
transformations. For further details, see [2], [3], (4], (6], [7], ¥ [8].

In the remaining part of the work we shall denote by Z y IN the sets of integers and
positive integers respectively.

Let us recall that a non-empty set T is an alphabet if for every x € X, x is an indivisible
symbol, i.e. if z is not made up of subsymbols such that they are in turn elements of .

A word defined on the alphabet ¥ is any finite sequence of symbols of ¥. Besides, if
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w is a word defined on I, the length of w is the number long(w) of ocurrences of symbols
of ¥ in w.
We shall denote by X* the set of all words of finite length defined on T.

A language defined on ¥ is any subset L of I*.
A phrase structure grammar G is a quadruple G = (Va, V4, S, P) where:

¢ V} is a non-empty set of terminal symbols (an alphabet),
e V. is a non-empty set disjointed with V; of non-terminals symbols,
e S € Vn is the initial symbol,

e P is a finite set of rules of production of the form o — B where a € (V, UV,)* -V, -
(VaUW)* and B € (VU V)"

In addition:

® way derives directly into p8u according to G and we shall denote it by pap A vy,
if there exists a rule of production a — § € P,

e o derives into 8 and we shall denote it o &3 B, if there exists v1,7%2,... ,7 €
(VAU Vo) such that @ S 31, 11 S g, 70 S 6.

Let G = (V», ¥, S, P) be a phrase structure grammar, then:

¢ The language generated by G is the set L(G) = {w € V;*: § % w}.

e If o € (V, UV,)*, the set of all the derivations of a according to G is the set
Dg(e) ={we (V,ul) :ad w}.

A Turing machine is a tuple T = (S, £, J, 8o, F'), where:
e S is a set of states, S # 0J;

> is an alphabet;

* 0 is a partial function with domain in S x ¥ and image in S x £ x {I, D, N};

Sp is the initial state, so € S;

F is the set of final states, F' C S.

A configuration of a Turing machine T = (S, T, §, so, F) is a triple (s, o, 7) € SxT*x IN.

We shall call transition of T' any pair of the binary relation I, between configurations,
defined : (s,caB,i) F (s',abB,) if, and only if 6(s,a) = (s',b, M) where s,5' € S;
o, €X*; M € L,N,R; a € T is the i~nth symbol of the word aaf and

1i—1 si M=L
=<1 st M=N
i+1 si M=R
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A language accepted by a Turing machine T = (S,Z, 4, so, F) is a language L(T) =
{we X (so,w,1) F* (sy, 1) for some sy € F,a € T*,1 € Z}.

The well-known Theorem 2.1 shows the equivalence between phrase structure gram-
mars and Turing machines as far as expressive power is concerned.

Theorem 2.1 Let L be a language defined on an alphabet £. Then, the following conds-
tions are equivalent:

(i) L 1is generated by a phrase structure grammar G,

(ii) there exists a Turing machine T such that L is accepted by T'.

.

Interaction machines were introduced by P. Wegner as a simple extension of Turing
machines. An interaction machine is a Turing machine with input actions that allow the
input of external data during the computational process.

In 1956, R. Ashby considered, in [1], certain notions which can be presented as follows.

Let S be a non-empty set whose elements we shall call states, then:
(a) a transition is a pair (a,f) € S x S.

(b) a transformation T is a binary relation defined over S and an initial state of T is a
fixed element of S.

(c) a transformation T is closed if the domain of T is S and is one-valued if T' is a
function of S in S.

3 Interaction machines and Asbhy’s transformatons

First we shall prove that the expressive power of Ashby’s transformations is at least
equal to the expressive power of phrase structure grammars.

Clearly, the observable behaviour of a phrase structure grammar is given by L(G), the
language generated by G.

In order to prove that an Ashby transformation has at least as much expressivness as
a phrase structure grammar, we must establish what we understand by expressive power,
or observable behaviour, of an Ashby transformation.

In [1] Ross Ashby says : “ The series of positions taken by the system in time clearly
corresponds to the series of elements generated by the succesive powers of the transfor-
mation. Such a sequence of states defines a trajectory or line of behaviour.”

For this reason, given an Ashby transformation T', its observable behaviour will be
determined by the sequence T'(s), T*(s),...T™(s),..., s being the initial state of T".

Definition 3.1 Let G = (Vo, W, S, P) be a phrase structure grammar. We shall call
Ashby transformation associated with G the function defined on the family of subsets of
(V, UW,)*, by means of the following prescriptions. We shall represent it with T,.

(i) T,(8) =0,
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() To({a}) = {a} fa eV},
(i) Ty({a}) = Do(e) if a € V7,

(iv) T,({oa,00,... ,0x}) = Dgla;) U Dg(az) U ... U Dglag), where oy, e, ... ,0r €
(Va U V)"

The lemma that follows will be used later.
Lemma 3.1 Let 8 € (V,UV,)* and k € IN. Then these conditions are equivalent.
(i) B e TP ({Sh),

(it) there exists o € TF({S}) such that S 8.

Proof
(i) = (i)
(1) a5 8,
(2) a € TF({S),
(3) Dala) € T(Ty({8}) = Ty ({S}) [def. 3.1, (2)]
(4) B € Dg(a), [(1)]
(5) B e Ty ({SY). [(3), (4)]
(if) = (i)
(1) Be T, ({S)),
(2) B € T(T7({SH), (D]
(3) there exists & such that & € TF({S}) and 8 € D¢(a), [(2) and def. 3.1]
4) a5 (3] =

Now we shall prove the most important result in this paper.

Theorem 3.1 Let L be the language generated by a phrase structure grammar; then there
ezists an Ashby transformation such that the language generated by G and the observable
behaviour of T coincide.

Proof

Let G = (Va, V;, S, P) be a phrase structure grammar and T, the Ashby transformation
associated to G.

Let us see that G and T have the same observable behaviour. In other words, we shall
prove that for every w € V;* these conditions are equivalent:

i) w e L(G)
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(ii) there exists k € IN such that w € T*({S})

(i) = (i)
(1) w e L(G)
2 ST wweV; (1))
(3) there exists 71,72, s ¥n € (Vi UVi)* such that & Sy, 1 Sy, oy o 2w [(2)]
(4) m € De(S) S T({S}) [(3)]

(5) 2 € T*({S}) ‘ [(3), (4) and lemma 3.1]

Going on with the procedure we prove that :

(6) m € ™({S})

(7) we TY({S}) [(3), (5) and lemma 3.1]
(i) = (9
(1) there exists k € IN such that w € T*({S})
(2) there exists y; € T*~1({S}) such that 7 S w [(1) and lemma 3.1]
(3) there exists y2 € T*"2({S}) such that ¥, Sy [(2) and lemma 3.1]

going on with the procedure we prove that

(4) there exists k-1 € T'({S}) such that yx_1 g Ye—2

(5) 55 1o [(4)]
6) S w [(2), (3), (4), (5)]
(7) we L(G) ((6)] W

The following corollary is deduced from Theorem 3.1 and the equivalence that ex-

ists between the Turing machines and phrase structure grammars with respect to their
expressive power.

Corolary 3.1 Let L be a language accepted by a Turing machine M, then there exists an
Ashby transformation such that the language accepted by M and the observable behaviour
coincide.
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After introducing transformations as representations of any mechanism, R. Ashby
noticed the fact that a machine (or a system) may act under different conditions and that
therefore it can change the way it behaves.

With the purpose of finding an appropriate representation for a machine that changes
its behaviour, this depending on external factors, the notion of parameter was introduced.

If we have a machine that behaves differntly according to external factors, then differ-
ent transformations will be used to represent the different ways of behaving. In addition
to them, a parameter will be used, the value of which will indicate the transformation to
be applied.

A real machine whose behaviour can be represented by such a set of transformations
is called by Ashby a machine with input. The set of transformations is its canonical
representation and the parameter, as something that can vary, is its input.

This parameter is what allows Ashby transformations not to be closed to the outside
world; on the contrary, they interact with it.

We consider that now the relationship between Wegner’s interaction machine and
Ashby transformations with parameter is clear. By Corolary 3.1 we know that any Turing
machine is equivalent to some Ashby transformation as far as observable behaviour is
concerned. The input operations are to interaction machines as parameters are to Ashby
transformations. They are what, in both cases, allow them to interact with external
environment.

These arguments justify the theorem that follows:

Theorem 3.2 Let M be an interaction machine, then there ezists an Ashby transforma-
tion with parameter T such that the observable behaviour of M and T' coincide.

4 Conclusions

The theoretical fundamentals of computer science have evolved from models equivalent
to the Turing machine to P. Wegner’s interaction models, which are particular cases of
the dynamic systems of the general system theory.
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