A DISTRIBUTIONAL CONVOLUTION PRODUC'T OF $(c^2 + P \pm i0)^{\lambda}$

MANUEL A. AGUIRRE T.

ABSTRACT. In this article we obtain two results: first we find a relation between the generalized functions $(c^2+P\pm i0)^{\lambda}$ and the distribution $\delta^{(k)}(P\pm i0+c^2)((16)$, as consequence we obtain a expansion style Taylor's series of $\delta^{(k)}(P\pm i0+c^2)$ see (26)) and then we give a sense to certain convolution of the form $(c^2+P\pm i0)^{\lambda}*(c^2+P\pm i0)^{\mu}(44)$, where $(c^2+P\pm i0)^{\lambda}$ is defined by (2). Our formula (44) is a generalization of the convolution $(P\pm i0)^{\lambda}*(P\pm i0)^{\mu}(56)$, this formula was proved by S.E.Trione in ([6], page 40) and ([10], pages 51-62). The interest of this study is due to the fact that many of the divergences appearing in quantum electrodynamics arise from divergent convolution $(P\pm i0)^{\lambda}*(P\pm i0)^{\mu}$.

1. Introduction.

Let P be a quadratic form in n variables defined by

$$P = P(x) = x_1^2 + x_2^2 + \dots + x_p^2 - x_{p+1}^2 - \dots + x_{p+q}^2$$
 (1)

where n = p + q (dimension of the space).

The distributions $(c^2 + P \pm i0)^{\lambda}$ are defined by

$$(c^{2} + P \pm i0)^{\lambda} = \lim_{\varepsilon \to 0} (c^{2} + P \pm i\varepsilon)^{\lambda}$$
 (2)

([1], page 289), where $\varepsilon > o$, c a positive real, λ is a complex number and

$$|x|^2 = x_1^2 + x_2^2 + \dots x_n^2$$

Similarly the distributions $(P \pm i0)^{\lambda}$ are defined defined by the following formula

$$(P \pm i0)^{\lambda} = \lim_{\varepsilon \to 0} (P \pm i\varepsilon)^{\lambda} \tag{3}$$

([1], page 275).

The distributions $(P \pm i0)^{\lambda}$ are analytic in λ everywhere except at $\lambda = -\frac{n}{2} - k, k = 0, 1, 2, ...$ where they have simple poles([1], page 275).

From([2], pag116,formulae30,31,and32) we have, If n is odd,

$$\operatorname{Re} s_{\lambda = -\frac{n}{2} - k} (P \pm i0)^{\lambda} = \frac{e^{\mp \frac{q\pi i}{2}} \pi^{\frac{n}{2}}}{2^{2k} k! \Gamma(\frac{n}{2} + k)} L^{k} \{\delta(x)\}$$
(4)

Key words and phrases. Theory of Distributions.

2000 Mathematics Subject Classification. 46F10, 46F12.

Work partially support by Comisión de Investigaciones Científicas(C.I.C.)(Argentina).

where L^k is the k-th iteration of the differential operator of the form

$$L^{k} = \left\{ \frac{\partial^{2}}{\partial^{2} x_{1}} + \dots + \frac{\partial^{2}}{\partial^{2} x_{p}} - \frac{\partial^{2}}{\partial^{2} x_{p+1}} - \dots \frac{\partial^{2}}{\partial^{2} x_{p+q}} \right\}^{k}.$$
 (5)

If n is even:

a) p and q both are even

$$\operatorname{Re} s_{\lambda = -\frac{n}{2} - k} (P \pm i0)^{\lambda} = \frac{e^{\mp \frac{q\pi i}{2}} \pi^{\frac{n}{2}}}{2^{2k} k! \Gamma(\frac{n}{2} + k)} L^{k} \{\delta(x)\}, \tag{6}$$

b) p and q both are odd

$$\operatorname{Re} s_{\lambda = -\frac{n}{2} - k} (P \pm i0)^{\lambda} = 0 \tag{7}$$

Also we may note from([1], page 278) that if n is odd, and also if n is even and $k < \frac{n}{2}$ we have,

Re
$$s_{\lambda = -k, k=1,2,...} (P \pm i0)^{\lambda} = 0.$$
 (8)

On the other hand, from ([2], page 121, formula 66) we have the following formula

$$(c^{2} + P \pm i0)^{\lambda} = \sum_{\nu \geq o} {\lambda \choose \nu} (c^{2})^{\nu} (P \pm i0)^{\lambda - \nu}$$
 (9)

where

$$\binom{\lambda}{\nu} = \frac{\Gamma(\lambda+1)}{\nu!\Gamma(\lambda-\nu+1)} = \frac{(-1)^{\nu}\Gamma(-\lambda+\nu)}{\nu!\Gamma(-\lambda)}.$$
 (10)

In this article we obtain two results: first we find a relation between the generalized functions $(c^2 + P \pm i0)^{\lambda}$ and the distribution $\delta^{(k)}(P \pm i0 + c^2)((16))$, as consequence we obtain a expansion style Taylor's series of $\delta^{(k)}(P \pm i0 + c^2)$ see (26)) and then we give a sense to certain convolution of the form $(c^2 + P \pm i0)^{\lambda} * (c^2 + P \pm i0)^{\mu}(44)$, where $(c^2 + P \pm i0)^{\lambda}$ is defined by (2). Our formula (44) is a generalization of the convolution $(P \pm i0)^{\lambda} * (P \pm i0)^{\mu}(56)$, this formula is was proved by S.E.Trione in ([6], page 40) and ([10], page 51-62). The interest of this study is due to the fact that many of the divergences appearing in quantum electrodynamics arise from divergent convolution $(P \pm i0)^{\lambda} * (P \pm i0)^{\mu}$.

Now we will study the singularities of distributions $(c^2 + P \pm i0)^{\lambda}$

2. The residue of
$$(c^2 + P \pm i0)^{\lambda}$$

We observe that the distributions $(P \pm i0)^{\lambda}$ have singularities at $\lambda = -\frac{n}{2} - k, k = 0, 1, 2, ...$, therefore from (9) the distributions $(c^2 + P \pm i0)^{\lambda}$ have singularities at $\lambda = 0, 1, 2, ...$

 $-\frac{n}{2} - k, k = 0, 1, 2, ...,$ and using (4),(6),(7) and (10) we have

$$\operatorname{Re} s_{\lambda = -\frac{n}{2} - k} (c^2 + P \pm i0)^{\lambda} =$$

$$\sum_{\nu \ge o} \frac{(-1)^{\nu} \Gamma(\frac{n}{2} + k + \nu)}{\nu! \Gamma(\frac{n}{2} + k)} (c^2)^{\nu} \operatorname{Re} s = \sum_{\alpha = -\frac{n}{2} - (k + \nu)} (P \pm i0)^{\alpha} =$$
(11)

$$\frac{e^{\mp \frac{q\pi i}{2} \pi^{\frac{n}{2}}}}{\Gamma(\frac{n}{2} + k) 2^{2k}} \sum_{\nu \ge o} \frac{(-1)^{\nu}}{\nu! (k+\nu)! 2^{2\nu}} (c^2)^{\nu} L^{k+\nu} \left\{ \delta(x) \right\}$$

if n is odd. When n is even we have the following cases

$$\operatorname{Re} s_{\lambda = -\frac{n}{2} - k} (c^2 + P \pm i0)^{\lambda} = \frac{e^{\mp \frac{q\pi i}{2}} \pi^{\frac{n}{2}}}{\Gamma(\frac{n}{2} + k)2^{2k}} \sum_{\nu > o} \frac{(-1)^{\nu}}{\nu! (k+\nu)! 2^{2\nu}} (c^2)^{\nu} L^{k+\nu} \left\{ \delta(x) \right\}$$
(12)

if p and q are both even,

Re
$$s_{\lambda = -\frac{n}{2} - k} (c^2 + P \pm i0)^{\lambda} = 0$$
 (13)

if p and q are both odd, and

Re
$$s_{\lambda=-l,l=1,2,...}(c^2 + P \pm i0)^{\lambda} = 0$$
 (14)

if $l < \frac{n}{2}$.

In the next section we will study the residue of $(c^2+P\pm i0)^{\lambda}$ at $\lambda=-k, k=1,2,...$, under condition $k\geq \frac{n}{2}$.

3. The residue of $(c^2 + P \pm i0)^{\lambda}$ at $\lambda = -k, k = 1, 2, ...$, under condition $k \geq \frac{n}{2}$.

To obtain the residue of $(c^2 + P \pm i0)^{\lambda}$ at $\lambda = -k, k = 1, 2, ...$, under condition $k \ge \frac{n}{2}$, with n even we need the following formula

$$\delta^{(k)}(P \pm i0 - m^2) = \frac{(-1)^k e^{\pm \frac{q\pi i}{2}} \pi^{\frac{n}{2}}}{4^{k - \frac{n}{2} + 1}} \sum_{\nu > o} \frac{(m^2)^{\nu}}{4^{\nu} \nu! (\nu - \frac{n}{2} + k + 1)!} L^{\nu - \frac{n}{2} + k + 1} \left\{ \delta(x) \right\} \tag{15}$$

if n is even and $k \ge \frac{n}{2}([3], \text{ page } 344, \text{ formula } 4.1).$

Theorem 1. Let $(c^2 + P \pm i0)^{\lambda}$ the distribution defined by (2) and the distribution $\delta^{(k)}(P \pm i0 - m^2)$ defined by (15) then the following formula is valid

$$Res_{\lambda=-k-1}(c^2 + P \pm i0)^{\lambda} = \frac{(-1)^k}{k!}\delta^{(k)}(P \pm i0 + c^2)$$
 (16)

under conditions $k \geq \frac{n}{2}$ and n even.

Proof. Putting $s = k - \frac{n}{2} + 1$ and $c^2 = -m^2$ in (15) we have,

$$\delta^{(k)}(P\pm i0+c^2)=$$

$$= \frac{(-1)^{s-\frac{n}{2}+1} e^{\mp \frac{q\pi i}{2} \pi^{\frac{n}{2}}}}{4^s} \sum_{\nu \ge o} \frac{(-c^2)^{\nu}}{4^{\nu} \nu! (\nu+s)!} L^{\nu+s} \left\{ \delta(x) \right\}$$
 (17)

On the other hand, from (12) we have,

$$Res_{\lambda = -\frac{n}{2} - s} (c^{2} + P \pm i0)^{\lambda} =$$

$$= \frac{e^{\mp \frac{q\pi i}{2} \frac{n}{2}}}{\Gamma(\frac{n}{2} + s)4^{s}} \sum_{\nu \geq o} \frac{(-c^{2})^{\nu}}{4^{\nu}\nu!(\nu + s)!} L^{\nu + s} \left\{ \delta(x) \right\}.$$
(18)

From (17) and (18) we have

$$Res_{\lambda = -\frac{n}{2} - s} (c^2 + P \pm i0)^{\lambda} = \frac{(-1)^{s + \frac{n}{2} - 1}}{\Gamma(\frac{n}{2} + s)} \delta^{(k)} (P \pm i0 + c^2)$$
 (19)

Taking into account that n is even and using that

$$\Gamma(\frac{n}{2}+s) = (\frac{n}{2}+s-1)$$

from (19) we have,

$$Res_{\lambda = -\frac{n}{2} - s} (c^2 + P \pm i0)^{\lambda} = \frac{(-1)^{s + \frac{n}{2} - 1}}{(\frac{n}{2} + s - 1)!} \delta^{(k)} (P \pm i0 + c^2)$$
 (20)

From (20) and using that

$$s = k - \frac{n}{2} + 1 \tag{21}$$

we obtain the following formula

$$Res_{\lambda=-k-1}(c^2 + P \pm i0)^{\lambda} = \frac{(-1)^k}{k!}\delta^{(k)}(P \pm i0 + c^2)$$
 (22)

which coincide with the formula (16).

It's clear that putting $c^2 = 0$ in both terms of the formula (22) we obtain the formula

$$Res_{\lambda=-k-1}(P \pm i0)^{\lambda} = \frac{(-1)^k}{k!} \delta^{(k)}(P \pm i0)$$
 (23)

where

$$\delta^{(k)}(P \pm i0) = \frac{(-1)^k e^{\mp \frac{q\pi i}{2} \pi^{\frac{n}{2}}}}{4^{k-\frac{n}{2}+1}(k-\frac{n}{2}+1)!} L^{k-\frac{n}{2}+1} \left\{ \delta(x) \right\}$$
 (24)

The formulae (23) and (24)) appear in ([4], page 39, formula 62).

On the other hand from (18) and using (21) and (24) we obtain the following formula

$$Res_{\lambda=-k-1}(c^2 + P \pm i0)^{\lambda} = \frac{(-1)^k}{k!} \sum_{\nu \ge 0} \frac{(c^2)^{\nu}}{\nu!} \delta^{(k+\nu)}(P \pm i0)$$
 (25)

From (22) and (25) we obtain the following expansion style Taylor's series

$$\delta^{(k)}(P \pm i0 + c^2) = \sum_{\nu > \rho} \frac{(c^2)^{\nu}}{\nu!} \delta^{(k+\nu)}(P \pm i0). \tag{26}$$

4. The convolution product of $(c^2 + P \pm i0)^{\lambda} * (c^2 + P \pm i0)^{\mu}$

We shall now evaluate the convolution product of

$$(c^2 + P \pm i0)^{\lambda} * (c^2 + P \pm i0)^{\mu}$$

taking into account the formula (9) and the Fourier transform of distribution $(P \pm i0)^{\lambda}$.

From ([1], page 284, formulae 3 and 3', we have,

$$F\{(P \pm i0)^{\lambda}\} = a(\lambda, q, n)(Q \mp i0)^{-\lambda - \frac{n}{2}}$$
(27)

where

$$Q = Q(y) = y_1^2 + \dots + y_p^2 - y_{p+1}^2 - \dots - y_{p+q}^2,$$

$$(Q \mp i0)^{-\lambda - \frac{n}{2}}$$
(28)

is defined by the formula (3), $F\{(P\pm i0)^{\lambda}\}$ indicates the Fourier transform of the distribution $(P\pm i0)^{\lambda}$:

$$F\{f_{\alpha}\} = \frac{1}{(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} e^{i\langle x,y\rangle} f_{\alpha}(x) dx \tag{29}$$

and

$$a(\lambda, q, n) = \frac{e^{\mp \frac{q\pi i}{2}} 2^{2\lambda + n} \pi^{\frac{n}{2}} \Gamma(\lambda + \frac{n}{2})}{\Gamma(-\lambda)(2\pi)^{\frac{n}{2}}}.$$
(30)

Using the formula (9) we give a sense the Fourier transform of $(c^2 + P \pm i0)^{\lambda}$:

$$F\{(c^{2} + P \pm i0)^{\lambda}\} = \sum_{\nu > o} {\lambda \choose \nu} (c^{2})^{\nu} F\{(P \pm i0)^{\lambda - \nu}\}.$$
 (21)

From ([6],pages23-25 and ([11],pages315-326)) and ([1], page 285) the last formula can be justified by the following form:

Let $f(z, \lambda), z \in C$, be an entire function of the variables $z, \lambda : f(z, \lambda) = \sum_{\nu \geq o} b_{\nu}(\lambda) z^{\nu}$. Let us consider the family of distribution of the form ([1],page 285)

$$T(P \pm i0, \lambda) = (P \pm i0)^{\lambda} f((P \pm i0, \lambda)) = (P \pm i0)^{\lambda} \sum_{\nu > o} b_{\nu}(\lambda) (P \pm i0)^{\nu}.$$
 (32)

To evaluate the Fourier transform of $T(P\pm i0,\lambda)$ in sense of Gelfand (c.f.[1]) we have to show that

$$F\left\{ (P \pm i0)^{\lambda} \sum_{\nu \ge o} b_{\nu}(\lambda) (P \pm i0)^{\nu} \right\} = \sum_{\nu \ge o} b_{\nu}(\lambda) F\left\{ (P \pm i0)^{\lambda + \nu} \right\}. \tag{33}$$

Let us suppose, provisionally that $Re(\lambda) > -1$; then the terms of the sequence (n = 0, 1, 2, ...)

$$\{g_n\} = \left\{ (P \pm i0)^{\lambda} \sum_{\nu=o}^{n} b_{\nu}(\lambda) (P \pm i0)^{\nu} \right\}$$
 (34)

are locally integrable functions. Since, by hypothesis, $f(z, \lambda)$ is an entire function, we conclude that the sequence (34) converges uniformly in every compact $K \subset \mathbb{R}^n$.

Therefore, by([7], theorem XVI, page 76), the sequence $\{g_n\}$ is convergent in D', and by the continuity of the Fourier transform, we conclude that the equation (33) is valid when $Re(\lambda) > -1$.

Then, taking into account the formulae (10),(27) and(30) we have

$$F\left\{ (c^2 + P \pm i0)^{\lambda} \right\} = \sum_{\nu \ge 0} {\lambda \choose \mu} (c^2)^{\nu} a(\lambda - \nu, q, n) (Q \mp i0)^{-\lambda - \frac{n}{2} + \nu}$$
 (35)

if $\lambda \neq -\frac{n}{2} \pm k$, k = 0, 1, 2, ..., n dimension of the space, where $a(\lambda - \nu, q, n)$ is defined by (30).

On the other hand, from([7]), theorem XV, page 268, the Fourier's transform F and \overline{F} are reciprocal isomorphisms from the space O_M and the space $O_{\overline{c}}$ respectively. In addition

if
$$T \in O_M \Longrightarrow \overline{F}[T] \in O_c$$
 (36)

and

if
$$T \in O'_c \Longrightarrow \overline{F}[T] \in O_M$$
 (37)

where O'_c is the space of rapidly decreasing distribution([7],page 244) and O_M is the space of all infinitely differentiable functions such that they and their derivatives are slow growth([7],page243) and if

$$g = F[T] \Longrightarrow f = \overline{F}[T] = F^{-1}[g].$$
 (38)

Now using that $(1+r^2)^{-m} \in O_M([7], page 243)$ where $r^2 = x_1^2 + ... + x_p^2 + x_{p+1}^2 + ...$

$$(Q \pm i0)^{-\frac{\alpha}{2}} \in O_M \tag{39}$$

for all α complex number such that $\frac{\alpha}{2} \neq \frac{n}{2} + k, k = 0, 1, ...$

From (35) and using (39) we have

$$F\left\{ (c^2 + P \pm i0)^{\lambda} \right\} \in O_M \tag{40}$$

if $\lambda \neq -\frac{n}{2} \pm k, k = 0, 1, 2, ..., n$ dimension of the space.

Now from (40) and using the propertie (36) and (38) we have

$$(c^2 + P \pm i0)^{\lambda} \in O_c' \tag{41}$$

if $\lambda \neq -\frac{n}{2} - k$, k = 0, 1, 2, ..., n dimension of the space and taking into account that $O_M, O'_c \subset S'$, where S' is the dual of S and S is the Schwartz clas of infinitely differential functions on R^n decreasing and infiny faster that $|x|^{-1}$ ([7],page234), we have

$$(c^2 + P \pm i0)^{\lambda} \in S'. \tag{42}$$

if $\lambda \neq -\frac{n}{2} - k, k = 0, 1, 2, ..., n$ dimension of the space.

From (41) and (42) and appealing to and considering the classical theorem of Schwartz ([7],page268,), we define the distributional convolution product of $(c^2 + P \pm i0)^{\lambda}$ and $(c^2 + P \pm i0)^{\mu}$ by means of the following:

Definition 2. Let λ and μ be complex numbers such that λ μ and $\lambda + \mu \neq -\frac{n}{2} + r, r = 0, 1, 2, ...$ and n dimension of the space, we define the distributional convolution product between $(c^2 + P \pm i0)^{\lambda}$ and $(c^2 + P \pm i0)^{\mu}$ by the formula

$$(c^{2} + P \pm i0)^{\lambda} * (c^{2} + P \pm i0)^{\mu} = (2\pi)^{\frac{n}{2}} F^{-1} \left\{ F \left[((c^{2} + P \pm i0)^{\lambda}) \cdot F \left[((c^{2} + P \pm i0)^{\mu}) \right] \right\}$$
(43)

where F^{-1} means the inverse of the Fourier's transform in the sense of the formula (38).

Using the above definition we get:

Theorem 3. Let λ and μ be complex numbers such that λ , μ and $\lambda + \mu \neq -\frac{n}{2} + r$, r = 0, 1, 2, ... and n dimension of the space then the distributional convolution product between $(c^2 + P \pm i0)^{\lambda}$ and $(c^2 + P \pm i0)^{\mu}$ define by (43) can be written in the following form

$$(c^2 + P \pm i0)^{\lambda} * (c^2 + P \pm i0)^{\mu} =$$

$$e^{\mp \frac{q\pi i}{2}} \pi^{\frac{n}{2}} A_{\lambda,\mu,n} \sum_{l \ge 0} {\lambda+\mu+\frac{n}{2} \choose l} \left\{ B(\lambda + \frac{n}{2} - l, \mu + \frac{n}{2} - l) \right\}$$

$$\tag{44}$$

$$(c^2)^l (P \pm i0)^{\lambda + \mu + \frac{n}{2} - l}$$

where

$$A_{\lambda,\mu,n} = \frac{\Gamma(-\lambda - \mu - \frac{n}{2})}{\Gamma(-\lambda)\Gamma(-\mu)} \tag{45}$$

and

$$B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} \tag{46}$$

for Re(x) > 0, Re(y) > 0 ([8], page 9, formula 5).

Proof. From (36), using (27), (35) and taking into account the formula

$$(Q \mp i0)^{\lambda} \cdot (Q \mp i0)^{\mu} = (Q \mp i0)^{\lambda + \mu}$$
 (47)

([6],page23,formula(I,3,1)) where $\lambda,\mu\in C$ and λ,μ and $\lambda-\mu$ are different from $-\frac{n}{2}-k,k=0,1,2,...$, we have,

$$F\left[(c^{2} + P \pm i0)^{\lambda}\right] \cdot F\left[(c^{2} + P \pm i0)^{\mu}\right] =$$

$$(2\pi)^{\frac{n}{2}} \sum_{l>0} R_{l}(\lambda, \mu, q, n)(c^{2})^{l} (Q \mp i0)^{-(\lambda + \mu + \frac{n}{2} + l) - \frac{n}{2}}$$

$$(48)$$

if λ, μ and $\lambda + \mu \neq -\frac{n}{2} \pm r, r = 0, 1, 2, \dots$ where

$$R_l(\lambda, \mu, q, n) = \sum_{\nu=0}^{l} {\lambda \choose \nu} {\mu \choose l-\nu} (c^2)^l a(\lambda-\nu, q, n) a(\mu-(l-\nu), q, n)$$
(49)

and $a(\gamma, q, n)$ is define by the formula(30).

Now using the propertie(27) and (33), from (48) we have

$$F^{-1}\left\{F\left[(c^2 + P \pm i0)^{\lambda}\right].F\left[(c^2 + P \pm i0)^{\mu}\right]\right\} = (2\pi)^{\frac{n}{2}} \sum_{l \ge a} T_l(\lambda, \mu, q, n)(c^2)^l (P \pm i0)^{\lambda + \mu + \frac{n}{2} - l}$$
(50)

if λ, μ and $\lambda + \mu \neq -\frac{n}{2} + r, r = 0, 1, 2, ..., n$ dimension of the space. Where

$$T_l(\lambda, \mu, q, n) = \frac{R_l(\lambda, \mu, q, n)}{a(\lambda + \mu + \frac{n}{2} - l, q, n)}.$$
 (51)

From (51), using the formulae (10), (30), (49) and taking into account the formulae

$$\frac{\Gamma(z)}{\Gamma(z-s)} = \frac{(-1)^s \Gamma(-z+s+1)}{\Gamma(1-z)}$$
 (52)

([8],page 344),

$$\sum_{\nu=o}^{l} \frac{l!}{\nu!(l-\nu)!\Gamma(-\lambda-\frac{n}{2}+\nu+1)\Gamma(-\mu-\frac{n}{2}+(l-\nu)+1)} = \frac{\Gamma(-\lambda-\frac{n}{2}-\mu-\frac{n}{2}+2l+1)}{\Gamma(-\lambda-\frac{n}{2}+l+1)\Gamma(-\mu-\frac{n}{2}+l+1)\Gamma(-\lambda-\frac{n}{2}-\mu-\frac{n}{2}+l+1)}$$
(53)

([9],page147) and after long but elementary calculation we get

$$T_{l}(\lambda, \mu, q, n) = \frac{e^{\mp \frac{q\pi i}{2} \pi^{\frac{n}{2}} (-1)^{l}}}{(2\pi)^{\frac{n}{2}}} \cdot \frac{\Gamma(-\lambda - \mu - \frac{n}{2})}{\Gamma(-\lambda)\Gamma(-\mu)}.$$

$${\binom{\lambda + \mu + \frac{n}{2}}{l}} B(\lambda + \frac{n}{2} - l, \mu + \frac{n}{2} - l).$$
(54)

From (50) and using (54) we obtain the formula (44) and finished the proof of theorem.

On the other hand, letting $\lambda = \frac{\alpha - n}{2}$ and $\mu = \frac{\beta - n}{2}$ in (44) we obtain the following formula

$$(c^2 + P \pm i0)^{\frac{\alpha - n}{2}} * (c^2 + P \pm i0)^{\frac{\beta - n}{2}} =$$

$$e^{\mp\frac{q\pi i}{2}\pi^{\frac{n}{2}}\frac{\Gamma(\frac{n-\alpha}{2}+\frac{n-\beta}{2}-\frac{n}{2})}{\Gamma(\frac{n-\alpha}{2})\Gamma(\frac{n-\beta}{2})}\sum_{l>o} {\frac{\alpha-n}{2}+\frac{\beta-n}{2}+\frac{n}{2}} B(\frac{\alpha}{2}-l,\frac{\beta}{2}-l)$$
(55)

$$(m^2)^l(P\pm i0)^{\frac{\alpha-n}{2}+\frac{\beta-n}{2}+\frac{n}{2}-l}\Big\}$$

where α, β and $\alpha + \beta \neq n + 2r, r = 0, 1, 2, ...$ and $B(\frac{\alpha}{2} - l, \frac{\beta}{2} - l)$ is given by the formula (46).

In particular taking $c^2 = 0$ in (55) and using the formula (46) we obtain the following convolution distributional product

$$(P \pm i0)^{\frac{\alpha-n}{2}} * (P \pm i0)^{\frac{\beta-n}{2}} = e^{\mp \frac{q\pi i}{2}} \pi^{\frac{n}{2}} \frac{\Gamma(\frac{n-\alpha}{2} + \frac{n-\beta}{2} - \frac{n}{2})}{\Gamma(\frac{n-\alpha}{2})\Gamma(\frac{n-\beta}{2})}$$

$$\frac{\Gamma(\frac{\alpha}{2})\Gamma(\frac{\beta}{2})}{\Gamma(\frac{\alpha+\beta}{2})} (P \pm i0)^{\frac{\alpha+\beta-n}{2}}$$
(56)

Actas del VII Congreso Dr. A. A. R. Monteiro, 2003

under conditions α, β and $\alpha + \beta \neq n + 2r, r = 0, 1, 2, ...$

The formula(56) has been proved by S.E.Trione in([6], page 40,formula(II,3,11) and([10],page 51-62).

REFERENCES

- [1] I.M.Gelfand and G.E.Shilov, Generalized Function, Vol. I, Academic Press, New York, 1964
- [2] M.Aguirre T., The Expansion and Fourier's Transforma of $\delta^{(k-1)}(m^2+P)$, Integral Transform and Special Functions, Vol.3, Nro.2, pp.113-134, 1995.
- [3] M.Aguirre T., The distributional $\delta^{(k)}(P \pm i0 m^2)$, Journal of Computational and Applied Mathematics 88 (1997), 339-348.
- [4] M.A.Aguirre T. and A.L.Barrenechea., A relation between the kth derivative of Dirac delta in $(P \pm i0)$ and the residue of distributions $(P \pm i0)^{\lambda}$, Journal of Computational and Applied Mathematics 108 (1999),31-40.
- [5] M.A.Aguirre T. and A.Kananthai., On the convolution product of the Distributional Families related to the Diamond Operatyor, Le Matematiche, vol.56, fasc.2, 2003.
- [6] S.E.Trione., Distributional Products, Cursos de Matemática, N°3, Serie II, IAM-CONICET,1980.
- [7] L. Schwartz., Théorie des distributions, Herman, Paris, 1966
- [8] A. Erdelyi(Ed.), Higher Trascendental Functions, Vol.I and II, McGraw-Hill, New York, 1953.
- [9] G.N.Watson., A treatisc on the theory of Bessel functions, second edition, Cambridge, University Press, 1994.
- [10] A.González Dominguez and S.E.Trione., On the Laplace transform of retarded invariant functions, Advances in Mathematics, Volume 30, number 2,1978, pp.51-62.
- [11] S.E.Trione., On the Fourier transform of causal distributions, Studie in Applied Mathematics, Massachusetts Institute of Tecnology, Cambrige, USA, 55,pp.315-326, 1976.

Núcleo Consolidado Matemática Pura y Aplicada, Facultad de Ciencias Exactas, Universidad Nacional del Centro, Pinto 399,(7000) Tandil, Argentina E-mail address: maguirre@@exa.unicen.edu.ar