A GENERALIZATION OF THE SPACES \mathcal{H}_{μ} , \mathcal{H}'_{μ} AND THE SPACE OF MULTIPLIERS.

SANDRA MOLINA

ABSTRACT. The Hankel transformation is defined by A.H. Zemanian ([1]) as follows:

 $\hbar_{\mu}f = \int_{0}^{\infty} f(x)\sqrt{xy}J_{\mu}(xy) \ dx$

where $0 < y < \infty$, $\mu \in \mathbb{R}$, $\mu \ge -\frac{1}{2}$ and J_{μ} designates the well-know Bessel function of first kind and order μ . This transformation has been studied in the Zemanian space \mathcal{H}_{μ} . The testing-function space \mathcal{H}_{μ} is countably multinormed and a Fréchet space. Moreover, the Hankel transformation is an automorphism of \mathcal{H}_{μ} whenever $\mu \ge -\frac{1}{2}$ and so it allows to define the Hankel transformation in \mathcal{H}'_{μ} by the adjoint transformation. In this work, we obtain some characterizations and topological properties of an n-dimensional generalization of the spaces \mathcal{H}_{μ} and \mathcal{H}'_{μ} . Certain properties are considered on \mathcal{O} , the space of multipliers of \mathcal{H}_{μ} and \mathcal{H}'_{μ} .

1. NOTATIONS

Let \mathbb{R}^n denote the real n-dimensional euclidean space, \mathbb{R}^n_+ the n-tuples of positive real numbers. \mathbb{N} the set $\{1,2,3\ldots\}$ and $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$, $|x| = (x_1^2 + \cdots + x_n^2)^{\frac{1}{2}}$. If $x,y \in \mathbb{R}^n$, $x = (x_1,\ldots,x_n)$, $y = (y_1,\ldots,y_n)$, the notations x < y and $x \le y$ mean, respectively, $x_i < y_i$ and $x_i \le y_i$ for $i = 1,\ldots,n$. Moreover, x = a for $x \in \mathbb{R}^n$, $a \in \mathbb{R}$ means $x_1 = x_2 = \cdots = x_n = a$, and e_j for $j = 1,\ldots,n$, denote the members of the canonical basis of \mathbb{R}^n . An element $k = (k_1,\ldots,k_n) = (k_j) \in \mathbb{N}_0^n = \mathbb{N}_0 \times \mathbb{N}_0 \times \cdots \times \mathbb{N}_0$ is called multiindex. For k,m multiindex we set

$$|k| = k_1 + \dots + k_n,$$

$$k! = k_1!, \dots, k_n!,$$

$$\binom{k}{m} = \binom{k_1}{m_1} \dots \binom{k_n}{m_n},$$

$$\sum_{j=m}^k f(j) = \sum_{j_1=m_1}^{k_1} \sum_{j_2=m_2}^{k_2} \dots \sum_{j_n=m_n}^{k_n} f(j_1, \dots, j_n).$$

If $x \in \mathbb{R}^n$, $x = (x_1, \dots, x_n)$, we set

$$x^m = x_1^{m_1} \dots x_n^{m_n}.$$

If $D_j = \frac{\partial}{\partial x_j}$, $j = 1, \dots, n$, then a differentiation partial respect to x is denoted by

$$D^k = D_1^{k_1} \dots D_n^{k_n}$$

2. The spaces \mathcal{H}_{μ} and \mathcal{H}'_{μ} .

Let us put $\mathbb{R}^n_+ = (0, \infty) \times (0, \infty) \times \cdots \times (0, \infty)$ and μ a n-tuple of real numbers $\mu = (\mu_1, \mu_2, \dots, \mu_n)$. We define the operators

$$T_i = x_i^{-1} \frac{\partial}{\partial x_i}$$

for i = 1, ..., n. For multiindex k we shall write

$$T^{k} = T_{n}^{k_{n}} \circ T_{n-1}^{k_{n-1}} \circ \cdots \circ T_{1}^{k_{1}}$$

where $T_i^j = T_i \circ \cdots \circ T_i$ (j times), " \circ " denote the usual composition. In the following we shall write $T_i T_j$ instead of $T_i \circ T_j$. We define the space \mathcal{H}_{μ} as follows

$$\mathcal{H}_{\mu} = \left\{ \phi \in C^{\infty}(\mathbb{R}^{n}_{+}) : \sup_{x \in \mathbb{R}^{n}_{+}} | x^{m} T^{k} \left\{ x^{-\mu - \frac{1}{2}} \phi(x) \right\} | < \infty, \ \forall m, k \in \mathbb{N}^{n}_{0} \right\}$$
 (1)

where $\mu \in \mathbb{R}^n$ and $-\mu - \frac{1}{2} = (-\mu_1 - \frac{1}{2}, -\mu_2 - \frac{1}{2}, \dots, -\mu_n - \frac{1}{2}).$

Observation 2.1. T_i, T, T^k are linear operators such that $T_iT_j = T_jT_i$ for i, j = 1, ..., n, and $T_i^nT_j^m = T_j^mT_i^n$ for $n, m \in \mathbb{N}_0$.

Observation 2.2.. \mathcal{H}_{μ} is a linear space with a countable collection of seminorms $\{\gamma_{m,k}^{\mu}\}_{m,k\in\mathbb{N}_0^n}$ defined by:

$$\gamma_{m,k}^{\mu}(\phi) = \sup_{x \in \mathbb{R}_+^n} |x^m T^k \left\{ x^{-\mu - \frac{1}{2}} \phi(x) \right\}|. \tag{2}$$

Moreover (2) is a separating collection of seminorms because $\{\gamma_{m,0}^{\mu}\}_{m\in\mathbb{N}_0^n}$ are norms.

Observation 2.3.. Let k be a multiindex, the following equality is valid

$$T^{k}\{\theta.\varphi\} = \sum_{j=0}^{k} {k \choose j} T^{k-j}\theta.T^{j}\varphi, \tag{3}$$

where "." denote the usual product of functions, $\binom{k}{j}$ and $\sum_{j=0}^{k}$ must be interpreted as in section 1 for $j=0=(0,\ldots,0)$.

The equality (3) can be derived from the following equation

$$T_i^k\{\theta.\varphi\} = \sum_{j=0}^k \binom{k}{j} T_i^{k-j} \theta. T_i^j \varphi \tag{4}$$

valid for $i = 1, ..., n, k \in \mathbb{N}$, which can be obtained by induction on k. Moreover, if $k \in \mathbb{N}^n$, $k = (k_1, ..., k_n)$ then, we have

$$T_2^{k_2}T_1^{k_1}\{\theta\varphi\} = T_2^{k_2}\bigg\{T_1^{k_1}\{\theta\varphi\}\bigg\} = T_2^{k_2}\left[\sum_{j_1=0}^{k_1} \binom{k_1}{j_1}T_1^{k_1-j_1}\theta.T_1^{j_1}\varphi\right] =$$

Actas del VII Congreso Dr. A. A. R. Monteiro, 2003

$$\begin{split} &= \sum_{j_1=0}^{k_1} \binom{k_1}{j_1} T_2^{k_2} \Big\{ T_1^{k_1-j_1} \theta. T_1^{j_1} \varphi \Big\} = \\ &= \sum_{j_1=0}^{k_1} \binom{k_1}{j_1} \Bigg[\sum_{j_2=0}^{k_2} \binom{k_2}{j_2} T_2^{k_2-\theta_2} \Big\{ T_1^{k_1-j_1} \{\theta\} \Big\}. T_2^{j_2} \Big\{ T_1^{j_1} \{\varphi\} \Big\} \Bigg] = \\ &= \sum_{j_1=0}^{k_1} \sum_{j_2=0}^{k_2} \binom{k_1}{j_1} \binom{k_2}{j_2} \Big[T_2^{k_2-j_2} T_1^{k_1-j_1} \{\theta\} \Big]. \Big[T_2^{j_2} T_1^{j_1} \{\varphi\} \Big]. \end{split}$$

Repeating this process we obtain that

$$T^{k}\{\theta.\varphi\} = T_{n}^{k_{n}} \dots T_{1}^{k_{1}}\{\theta.\varphi\} =$$

$$= \sum_{j_{1}=0}^{k_{1}} \dots \sum_{j_{n}=0}^{k_{n}} {k_{1} \choose j_{1}} \dots {k_{n} \choose j_{n}} \left[T_{n}^{k_{n}-j_{n}} \dots T_{1}^{k_{1}-j_{1}}\{\theta\} \right] \cdot \left[T_{n}^{j_{n}} \dots T_{1}^{j_{1}}\{\varphi\} \right] =$$

$$\sum_{j=0}^{k} {k \choose j} T^{k-j} \theta. T^{j} \varphi.$$

Lemma 2.1. If $\phi \in \mathcal{H}_{\mu}$, for each multiindex k, $D^{k}\phi(x)$ is rapid descent as $|x| \to \infty$, (i.e, for each pair of multiindex m, k then $x^{m}D^{k}\phi = 0$ (1) as $|x| \to \infty$).

Proof: Let be $\phi \in \mathcal{H}_{\mu}$, $k, m \in \mathbb{N}_0^n$ we shall prove that there exists $C_{m,k} \in \mathbb{R}^+$ such that

$$\mid x^m D^k \phi(x) \mid < C_{m,k} \tag{5}$$

for all $x \in B$ where $B = \mathbb{R}^n_+ - Q$ and $Q = (0,1] \times \cdots \times (0,1]$. From (5) we deduce that $|x^m D^k(\phi)| = 0(1)$ whenever $|x| \to \infty$. We shall use induction on $|k| = k_1 + k_2 + \cdots + k_n$ to prove (5). To do this, we write B as a finite union of disjoint subsets. Considering for each $1 \le s \le n$ the collection $\mathcal{P}_s = \{A_{j_1...j_s}\}_{\substack{j_1,...,j_s=1\\j_1<\cdots< j_s}}^n$ such that

$$\mathcal{A}_{j_1...j_s} = \left\{ x \in \mathbb{R}^n_+ : x_{j_r} \in (1, \infty), r = 1, \dots, s, \quad y \quad x_j \le 1 \quad \text{si} \quad j \ne j_r \right\}$$
(6)

Note that $\mathcal{P}_0 = \{Q\}$ and $\mathcal{P}_n = (1, \infty)^n$. Let us put

$$\mathcal{P} = \bigcup_{i=1}^n \mathcal{P}_i$$
 ,

then $B = \mathbb{R}^n_+ - Q = \bigcup_{A \in \mathcal{P}} A$.

Now, we are going to consider that |k| = 0, (k = (0, ..., 0)) and $m \in \mathbb{N}_0^n$. We choose $m' \in \mathbb{N}_0^n$ such that $m < m' - \mu - \frac{1}{2}$. Since $\phi \in \mathcal{H}_{\mu}$, there exists a constant $C_{m',0} \in \mathbb{R}_+$ which verifies

$$\sup_{x \in \mathbb{R}^n_+} |x^{m'-\mu-\frac{1}{2}}\phi(x)| < C_{m',0} . \tag{7}$$

Then

$$\sup_{x \in B} |x^m \phi| = \max_{\mathcal{A} \in \mathcal{P}} \{ \sup_{x \in \mathcal{A}} |x^m \phi| \}. \tag{8}$$

If the maximal in (8) is attained by some $\mathcal{A}' \in \mathcal{P}$, then there is an integer number $s \ (1 \le s \le n)$ such that $\mathcal{A}' \in \mathcal{P}_s$. Let $\mathcal{A}' = \mathcal{A}_{j_1,\dots,j_s}$ and

$$C = \{ x \in \mathcal{A}' : x_i = 1 \text{ para } i \neq j_1 \dots j_s \},$$

then for $x \in \mathcal{A}'$:

$$|x^{m}\phi| \leq |x_{j_{1}}^{m_{j_{1}}} \dots x_{j_{s}}^{m_{j_{s}}}\phi| \leq |x_{j_{1}}^{m'_{j_{1}}-\mu_{j_{1}}-\frac{1}{2}} \dots x_{j_{s}}^{m'_{j_{s}}-\mu_{j_{s}}-\frac{1}{2}}\phi| \leq \sup_{x \in \mathbb{R}^{n}_{+}} |x^{m'-\mu-\frac{1}{2}}\phi(x)| \leq C_{m',0}.$$

Next, ϕ is rapid descent. The general case follows by induction on |k| and the following equality, valid for $k \in \mathbb{N}^n$,

$$T^{k}\left\{x^{-\mu-\frac{1}{2}}\phi\right\} = x^{-\mu-\frac{1}{2}}\left\{\sum_{j=0}^{k} b_{k,j} \frac{D^{j}\phi}{x^{2k-j}}\right\},\tag{9}$$

for some constants $b_{k,i}$.

Corollary 2.1.. If $\phi \in \mathcal{H}_{\mu}$ and $\mu \geq -\frac{1}{2}$ then $\phi \in L^{1}(\mathbb{R}^{n}_{+})$.

Proof: If $\phi \in \mathcal{H}_{\mu}$ then $\gamma_{0,0}^{\mu}(\phi) < \infty$ and therefore $\phi(x) = x^{\mu + \frac{1}{2}}\psi(x)$ where ψ is a bounded function in \mathbb{R}_{+}^{n} . Next, ϕ is bounded in a neighborhood of 0 and by the lemma 2.1 is rapid descent in ∞ , then $\phi \in L^{1}(\mathbb{R}_{+}^{n})$.

Lemma 2.2. \mathcal{H}_{μ} is a Fréchet space.

Proof: Let $\{\phi_{\nu}\}_{{\nu}\in\mathbb{N}}$ be a Cauchy sequence in \mathcal{H}_{μ} , then if $m,k\in\mathbb{N}_{0}^{n}$ and $\varepsilon>0$, exists $N_{\varepsilon,m,k}\in\mathbb{N}$ such that if $\nu,\eta\geq N_{\varepsilon,m,k}$, we have

$$\gamma_{m,k}^{\mu}(\phi_{\nu} - \phi_{\eta}) < \varepsilon. \tag{10}$$

Consequently, from (10) we obtain, for m = 0, that

$$\sup_{x \in \mathbb{R}_+^n} |T^k \{ x^{-\mu - \frac{1}{2}} (\phi_\nu - \phi_\eta) \}| < \varepsilon \qquad \nu, \eta \ge N_{\varepsilon, 0, k} . \tag{11}$$

Considering the case k=0 in (11), we obtain the uniform convergence of $\{\phi_{\nu}\}$ on compact subsets $K\subset\mathbb{R}^n_+$ whereas $x^{-\mu-\frac{1}{2}}$ is continuous on K for each $\mu\in\mathbb{R}$. By induction on |k| and equality (9) we obtain the uniform convergence on compact subsets of \mathbb{R}^n_+ for $\{D^k\phi_{\nu}\}_{\nu\in\mathbb{N}}$. Therefore, there is a $\phi\in C^{\infty}(\mathbb{R}^n_+)$ such that $D^k\phi_{\nu}(x)\to D^k\phi(x)$ when $\nu\to\infty$ for each $k\in\mathbb{N}^n_0$ and $x\in\mathbb{R}^n_+$. Taking $\eta\to\infty$ in (10), we obtain

$$\gamma_{m,k}^{\mu}(\phi_{\nu} - \phi) \le \varepsilon \qquad \forall \nu > N_{\varepsilon,m,k} .$$
 (12)

Moreover, $\gamma_{m,k}^{\mu}(\phi_{\nu})$ are uniformly bounded for $\nu \in \mathbb{N}$ because $\{\phi_{\nu}\}_{\nu \in \mathbb{N}}$ is a Cauchy sequence. Next, from inequality (12) and the following inequality

$$\gamma_{m,k}^{\mu}(\phi) \le \gamma_{m,k}^{\mu}(\phi - \phi_{\nu}) + \gamma_{m,k}^{\mu}(\phi_{\nu}),$$

Actas del VII Congreso Dr. A. A. R. Monteiro, 2003

we obtain that $\phi \in \mathcal{H}_{\mu}$.

Observation 2.4. \mathcal{H}_{μ} with the collection of seminorms $\{\gamma_{m,k}^{\mu}\}_{m,k\in\mathbb{N}^n}$, is a testing-function space on \mathbb{R}_+^n , ([1], §2.4).

 \mathcal{H}'_{μ} denote the dual space of \mathcal{H}_{μ} .

Observation 2.5.. \mathcal{H}'_{μ} is also complete ([1], §1.8).

Example 2.1. For n = 1 and $\mu \in \mathbb{R}$, the function $\varphi(x) = x^{\mu + \frac{1}{2}} e^{-x^2} \in \mathcal{H}_{\mu}$. For n > 1 the function $\gamma(x) = x^{\mu + \frac{1}{2}} e^{-|x|^2} = x_1^{\mu_1 + \frac{1}{2}} \dots x_n^{\mu_n + \frac{1}{2}} e^{-(x_1^2 + \dots + x_n^2)} \in \mathcal{H}_{\mu}$.

The following properties are valid for \mathcal{H}_{μ} and \mathcal{H}'_{μ} :

1. Let $\{e_i\}_{i=1,...,n}$ be the canonical basis of \mathbb{R}^n , then for each even positive integer q, $\mathcal{H}_{\mu+qe_i} \subset \mathcal{H}_{\mu}$ for $i=1,\ldots,n$.

To see this, we first consider q=2. Let be $\phi \in \mathcal{H}_{\mu+2e_i}$ with $\mu+2e_i=(\mu_1,\ldots,\mu_i+2,\ldots,\mu_n)$ and $k\in \mathbb{N}^n$, $k=(k_1,\ldots,k_n)$, from (3) we obtain

$$T^{k}\{x^{-\mu-\frac{1}{2}}\phi(x)\} = T^{k}\{x_{i}^{2}x^{-(\mu+2e_{i})-\frac{1}{2}}\phi(x)\} =$$

$$= \sum_{i=0}^{k} {k \choose j} T^{k-j} \{ x^{-(\mu+2e_i)-\frac{1}{2}} \phi(x) \} . T^j \{ x_i^2 \}.$$
 (13)

The terms $T^{j}\{x_{i}^{2}\}$ are zero if $j \neq 0$ and $j \neq e_{i}$. So, we obtain

$$T^k\{x^{-\mu-\frac{1}{2}}\phi(x)\} =$$

$$= \binom{k}{0} T^0 \{x_i^2\} T^k \{x^{-(\mu+2e_i)-\frac{1}{2}} \phi(x)\} + \binom{k}{e_i} T^{e_i} \{x_i^2\} T^{k-e_i} \{x^{-(\mu+2e_i)-\frac{1}{2}} \phi(x)\} =$$

$$= x_i^2 T^k \{x^{-(\mu+2e_i)-\frac{1}{2}} \phi(x)\} + 2k_i T^{k-e_i} \{x^{-(\mu+2e_i)-\frac{1}{2}} \phi(x)\}.$$

Multiplying by x^m , $m \in \mathbb{N}^n$, the last formula, we have

$$\gamma_{m,k}^{\mu}(\phi) \le \gamma_{m+2e_i,k}^{\mu+2e_i}(\phi) + 2k_i \, \gamma_{m,k-e_i}^{\mu+2e_i}(\phi).$$

Wherefrom $\phi \in \mathcal{H}_{\mu}$ y $\mathcal{H}_{\mu+2e_i} \subset \mathcal{H}_{\mu}$. The general case follows by induction.

2. The space $\mathcal{D}(\mathbb{R}^n_+)$, (the set of infinitely differentiable functions whose support is a compact set contained in \mathbb{R}^n_+), is a subspace of \mathcal{H}_μ for each $\mu \in \mathbb{R}^n$. Moreover, $\mathcal{D}(\mathbb{R}^n_+)$ is not dense in \mathcal{H}_μ .

Since $x^m T^k \{x^{-\mu - \frac{1}{2}} \phi(x)\}$ has compact support for all k and m multiindices and $\phi \in \mathcal{D}(\mathbb{R}^n_+)$, it is clear that $\mathcal{D}(\mathbb{R}^n_+) \subset \mathcal{H}_{\mu}$. To prove the second statement, we consider the function $\gamma(x) = x^{\mu + \frac{1}{2}} e^{-|x|^2}$ (example 2.9) and the neighborhood of γ :

$$\mathcal{B}_{\gamma} = \left\{ \phi \in \mathcal{H}_{\mu} : \gamma_{0,0}^{\mu}(\phi - \gamma) < \frac{1}{2} \right\}.$$

Next, if $\psi \in \mathcal{D}(\mathbb{R}^n_+)$, whose support is $K \subset \mathbb{R}^n_+$, then we have

$$\gamma_{0,0}^{\mu}(\psi - \gamma) = \sup_{x \in \mathbb{R}_{+}^{n}} |x^{-\mu - \frac{1}{2}}(\psi(x) - \gamma(x))| \ge$$

$$\geq \sup_{x \in \mathbb{R}^n_+ - K} |x^{-\mu - \frac{1}{2}} (\psi(x) - \gamma(x))| = \sup_{x \in \mathbb{R}^n_+ - K} |e^{-|x|^2}| = 1.$$

The conclusion is

$$\mathcal{B}_{\gamma} \cap \mathcal{D}(\mathbb{R}^n_+) = \emptyset.$$

- 3. It is clear that the convergence in $\mathcal{D}(\mathbb{R}^n_+)$ implies the convergence in \mathcal{H}_{μ} , wherefrom we deduce that the restriction of $f \in \mathcal{H}'_{\mu}$ to $\mathcal{D}(\mathbb{R}^n_+)$ is a member of $\mathcal{D}'(\mathbb{R}^n_+)$.
- 4. Since $\mathcal{D}(\mathbb{R}^n_+) \subset \mathcal{H}_{\mu} \subset \mathcal{E}(\mathbb{R}^n_+)$, where $\mathcal{E}(\mathbb{R}^n_+) = \{f : \mathbb{R}^n_+ \to \mathbb{C}, f \in \mathbb{C}^{\infty}\}$, $\forall \mu \in \mathbb{R}^n$, we deduce the density of \mathcal{H}_{μ} in $\mathcal{E}(\mathbb{R}^n_+)$.
- 5. The topology of \mathcal{H}_{μ} generated by the collection of seminorms $\{\gamma_{m,k}^{\mu}\}_{m,k\in\mathbb{N}}$ is stronger than that induced on it by $\mathcal{E}(\mathbb{R}_{+}^{n})$. By density of \mathcal{H}_{μ} in $\mathcal{E}(\mathbb{R}_{+}^{n})$ we obtain that $\mathcal{E}'(\mathbb{R}_{+}^{n})$ is a subspace of \mathcal{H}'_{μ} for all $\mu \in \mathbb{R}^{n}$.

To see this, we consider the collection of seminorms in $\mathcal{E}(\mathbb{R}^n_+)$ given by $R = \{\chi_{K',k}\}_{K' \in C, k \in \mathbb{N}^n}$, where C denote the class of all the compact subsets of \mathbb{R}^n_+ , so for $\psi \in \mathcal{E}(\mathbb{R}^n_+)$, we arrive at

$$\chi_{K',k}(\psi) = \sup_{x \in K'} |D^k \psi|.$$

Let S the collection of seminorms defined in \mathcal{H}_{μ} by (2). Let us show that the following property is valid

$$\forall \chi \in R, \ \exists \gamma_1, \dots, \gamma_r \in S : \ \chi(\phi) \le C(\gamma_1(\phi) + \dots + \gamma_r(\phi)), \quad \forall \phi \in \mathcal{H}_{\mu}$$
(14)

Let K' be a compact set and k = (0, ..., 0) = 0. If $\phi \in \mathcal{H}_{\mu}$, then

$$\chi_{K',0}(\phi) = \sup_{x \in K'} |\phi(x)| \le C \sup_{x \in \mathbb{R}^n_+} |x^{-\mu - \frac{1}{2}}\phi(x)| = C\gamma_{0,0}^{\mu}(\phi), \tag{15}$$

where $C = \sup_{x \in K'} |x^{\mu + \frac{1}{2}}|$. If |k| = 1, $k = e_i$ we obtain, by (9), that

$$T^{e_i}\left\{x^{-\mu-\frac{1}{2}}\phi\right\} = x^{-\mu-\frac{1}{2}}\left\{b_{e_i,0}\frac{\phi}{x_i^2} + b_{e_i,e_i}\frac{D^{e_i}\phi}{x_i}\right\}.$$

Hence

$$\sup_{x \in K'} |D^{e_i}\phi(x)| \le$$

$$\leq M \left\{ \frac{c_1}{b_{e_i,e_i}} \sup_{x \in K'} |T^{e_i} \{ x^{-\mu - \frac{1}{2}} \phi(x) \}| + c_2 \frac{b_{e_i,0}}{b_{e_i,e_i}} \sup_{x \in K'} |\phi(x)| \right\},\,$$

where $M = \sup_{x \in K'} |x_i|$, $c_1 = \sup_{x \in K'} |x^{\mu + \frac{1}{2}}|$, $c_2 = \sup_{x \in K'} |\frac{1}{x_i^2}|$. Next, taking into account (16), we obtain

$$\chi_{K',e_i}(\phi) \le M \left\{ c_1' \gamma_{e_i,0}^{\mu}(\phi) + c_2' \chi_{K',0}(\phi) \right\} \le C_1 \left\{ \gamma_{e_i,0}^{\mu}(\phi) + \gamma_{0,0}^{\mu}(\phi) \right\}.$$

The property (14) is obtained by induction on |k| and the equatity (9). Finally, we obtain that the topology generated by S is stronger than that generated by R.

6. Let $f: \mathbb{R}^n_+ \to \mathbb{C}$ be a locally integrable function on \mathbb{R}^n_+ , such that f is of slow growth at infinite ($\exists r \in \mathbb{N}$ such that $|f(x)| = O(|x^r|)$ as $|x| \to \infty$) and $x^{\mu+\frac{1}{2}}f(x)$ is absolutely integrable on $Q = (0,1)^n \subset \mathbb{R}^n_+$ for $\mu \in \mathbb{R}^n$. Then, f define a regular generalized function in \mathcal{H}'_{μ} given by:

$$(f,\phi) = \int_{\mathbb{R}^n_+} f(x)\phi(x) dx$$
, para cada $\phi \in \mathcal{H}_{\mu}$.

7. \mathcal{H}_{μ} can be identified with a subspace of \mathcal{H}'_{μ} if $\mu \geq -\frac{1}{2}$.

Given a function $f \in \mathcal{H}_{\mu}$, by property 6, Lemma 2.1 and Corollary 2.1, it can be considered as an element of \mathcal{H}'_{μ} . Since the functions of \mathcal{H}_{μ} are continuous, if $f, g \in \mathcal{H}_{\mu}$ such that $f \neq g$, then there exists an open set of \mathbb{R}^n_+ where $f \neq g$ and then there is a function $\phi \in \mathcal{D}(\mathbb{R}^n_+)$ such that $(f, \phi) \neq (g, \phi)$.

3. The space \mathcal{O}

Let \mathcal{O} be the space of functions $\theta \in C^{\infty}(\mathbb{R}^n_+)$ with the property that for every $k \in \mathbb{N}^n$ there exists $n_k \in \mathbb{Z}$ and $C \in \mathbb{R}_+$ such that

$$\mid (1+\mid x\mid^2)^{n_k} T^k \theta \mid < C \quad \forall x \in I\!\!R^n_+.$$

Observation 3.1. The product of members of \mathcal{O} is a member of \mathcal{O} .

It follows from (3).

Lemma 3.1. The operator $\phi \mapsto \theta \phi$, where $\theta \in \mathcal{O}$, is a continuous operator of \mathcal{H}_{μ} into itself. Moreover, the adjoint operator $f \mapsto \theta f$ defined on \mathcal{H}'_{μ} by

$$\langle \theta f, \phi \rangle = \langle f, \theta \phi \rangle \quad f \in \mathcal{H}'_{\mu}, \; \theta \in \mathcal{O}, \; \phi \in \mathcal{H}_{\mu} \; ,$$

is a lineal and continuous operator of \mathcal{H}'_{μ} into itself.

Proof: Let $\theta \in \mathcal{O}$, $\phi \in \mathcal{H}_{\mu}$ and $m, k \in \mathbb{N}^n$. In view of (3), we obtain

$$|x^{m}T^{k}\{x^{-\mu-\frac{1}{2}}\theta\phi(x)\}| = |x^{m}\sum_{j=0}^{k} {k \choose j}T^{j}\theta.T^{k-j}\{x^{-\mu-\frac{1}{2}}\phi(x)\}| \leq$$

$$\leq \sum_{j=0}^{k} {k \choose j}C_{j} |(1+|x|^{2})^{-n_{k}}x^{m}T^{k-j}\{x^{-\mu-\frac{1}{2}}\phi(x)\}|,$$
(16)

where the constant C_j satisfies $|(1+|x|^2)^{n_j} T^j \theta| < C_j \quad \forall x \in \mathbb{R}^n_+$. Next, for every multiindex j there exist a finite set of multiindex Γ_j such that

$$\mid x^m T^k \{ x^{-\mu - \frac{1}{2}} \theta \phi(x) \} \mid \leq \sum_{j=0}^{k} \binom{k}{j} C_j \left(\sum_{\alpha \in \Gamma_j} \gamma_{\alpha, k-j}^{\mu}(\phi) \right). \tag{17}$$

Therefore, we deduce that $\theta \phi \in \mathcal{H}_{\mu}$ and the continuity of $\phi \mapsto \theta \phi$.

Lemma 3.2.. Let P(x) and Q(x) be polynomials of one variable such that Q(x) has no zeros on $0 \le x < \infty$. Then $\frac{P(|x|^2)}{Q(|x|^2)} \in \mathcal{O}$ for $x = (x_1, \dots, x_n) \in \mathbb{R}^n$.

Proof: If $k \in \mathbb{N}^n$, then

$$T^{k} \Big\{ P(|x|^{2}) \Big\} = 2^{|k|} P^{|k|} (|x|^{2}),$$

where $P^{|k|}$ denotes the derivative of order |k| of P. Therefore $P(|x|^2) \in \mathcal{O}$. On the other hand, we have

$$T^{k} \left\{ \frac{1}{Q} (|x|^{2}) \right\} = 2^{|k|} \left(\frac{1}{Q} \right)^{|k|} (|x|^{2}).$$

The expression of $\frac{1}{Q}^{|k|}$ has the form $\frac{N}{Q^{2^{|k|}}}$ where $gr(N) < gr(Q^{2^{|k|}})$. Since Q has no zeros in $[0, \infty)$ then $\frac{1}{Q(|x|^2)} \in \mathcal{O}$, and by observation 3.1 we conclude that $\frac{P(|x|^2)}{Q(|x|^2)} \in \mathcal{O}$.

REFERENCES

- [1] A. H. Zemanian: Generalized Integral Transformations, Interscience, New York (1968).
- [2] A. H. Zemanian: A distributional Hankel transformation, SIAM J. Appl. Math. 14 (1966), 561-576.
- [3] E.L.Koh: The n-dimensional distributional Hankel transformation. Can. J. Math., Vol. XXVII No 2, 1975, pp.423-433.
- [4] Yu. A. Brychkov; H. J. Glaeske; A.P. Prudnikov; Vu Kim Tuan: Multidimensional Integral Transformations, Gordon and Breach Science Publishers, (1992).
- [5] Betancor J.J, Marrero I.: Multipliers of Hankel transformable generalized functions, Comment. Math. Univ.Carolinae 33,3(1992), 389-401.

FACULTAD DE CIENCIAS EXACTAS Y NATURALES. UNIVERSIDAD NACIONAL DE MAR DEL PLATA. (7600) MAR DEL PLATA. ARGENTINA.

E-mail address: smolina@mdp.edu.ar