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COMPARISON THEOREM AND GEOMETRIC REALIZATION
OF REPRESENTATIONS

TIM BRATTEN AND ESTHER GALINA

ABSTRACT. In this paper we generalize the comparison theorem of Hecht and Taylor to
arbitrary parabolic subalgebras of a complex reductive Lie algebra and apply our general-
ized comparison theorem to obtain results about the geometric realization of representa-
tions in flag spaces.

1. INTRODUCTION

This manuscript concerns a homological property of representations for a reductive Lie
group, called the comparison theorem, and the relation this property has to the realization
of representations in complex flag spaces.

The realization of representations in complex flag spaces has historically played a cen-
tral role in the theory. One of the basic constructions, the parabolic induction, defines
representations as the sections of homogeneous vector bundles defined over certain closed
orbits in complex flag spaces. Schmid’s realization of the discrete series, generalizing
the Borel-Weil-Bott theorem, gave a defining alternative to the parabolic induction, find-
ing the missing representations on the sheaf cohomology groups of certain homogeneous
holomorphic line bundles defined on open orbits in full flag spaces.

The problem of understanding sheaf cohomologies of homogeneous holomorphic vec-
tor bundles turned out to be a bit tricky, and it took some time until general results were
obtained. Meanwhile, the localization theory of Beilinson and Bernstein [1] provided a
canonical geometric realization, defined in the full flag space, for any irreducible Harish-
Chandra modules. Via localization, many irreducible Harish-Chandra modules are nicely
realized as certain standard geometric objects (a precise criteria for this is known [14])
but in general one does not yet fully understand the localization of irreducible representa-
tions. The analytic localization theory of Hecht and Taylor [9] gives a global counterpart
to the Beilinson-Bernstein algebraic theory. A main result of the analytic theory shows that
the compactly supported cohomology of the polarized sections of an irreducible homoge-
neous vector bundle realizes the minimal globalization of the cohomology of an associated
standard Beilinson-Bernstein sheaf.

Although the Hecht-Taylor result constructs, for example, all of the tempered represen-
tations, many irreducible representations are not realized as standard modules in a full flag
space. Thus one considers analogous constructions defined on arbitrary flag spaces. Along
these lines, Wong [17] studied the representations obtained on the sheaf cohomologies
of finite rank homogeneous holomorphic vector bundles defined over certain open orbits
in generalized flag spaces, proving a special case of a conjecture by Vogan. Using the
methods of algebraic and analytic localization in flag spaces, a general version of Vogan’s
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conjecture has been shown and a realization for the Harish-Chandra modules defined by
cohomological parabolic induction was given [4].

In this study we consider how the mesh of localization theories works, in complete
generality, for complex flag spaces. As an intermediate result we obtain our Theorem 4.1,
which generalizes the Hecht-Taylor comparison theorem [10] to arbitrary orbits in flag
spaces, provided one makes a finiteness assumption. A main result, Theorem 5.5, applies
the generalized comparison theorem to show that the Hecht-Taylor realization of standard
modules extends naturally to a class of orbits we callaffinely oriented(this includes all
open orbits, and therefore all the homogeneous holomorphic vector bundles). We finish
our study by analyzing an example showing how the situation works in the case where the
orbit in question is not affinely oriented. In particular, we illustrate how Theorem 5.5 fails
to hold.

This study is organized as follows. In Section 2 we introduce the algebraic and analytic
localization in flag spaces and establish some results we will use. In Section 3 we define
the standard modules. In Section 4 we prove the comparison theorem and in Section 5 we
establish our main result. In the last section we consider theSU(n,1) action in complex
projective space and see how the main result fails when the orbit is not affinely oriented.

2. ALGEBRAIC AND ANALYTIC LOCALIZATION

In this section we introduce the minimal globalization, define the flag spaces, consider
the generalized TDOs and establish some facts about the algebraic and analytic localization
in complex flag spaces.

Throughout this study,G0 denotes a reductive group of Harish-Chandra class with Lie
algebrag0 andg denotes the complexification ofg0. We fix a maximal compact subgroup
K0 of G0 and letK denote the complexification ofK0. G indicates the complex adjoint
group ofg.

Minimal Globalization. By definition, a Harish-Chandra moduleis a finite-lengthg-
module equipped with a compatible, algebraicK-action. For example, the set ofK0-finite
vectors in an irreducible unitary representation forG0 is a Harish-Chandra module.

Let M be a Harish-Chandra module. Aglobalizationof M means a finite-length, ad-
missible representation forG0 in a complete, locally convex space whose underlying space
of K0-finite vectors isM. By now there are known to exist several canonical and functo-
rial globalizations of Harish-Chandra modules, including the remarkableminimal global-
ization, whose existence was first proved by Schmid [15]. The minimal globalization is
functorial and embeds continuously andG0-equivariantly in any corresponding globaliza-
tion. Indeed, as a functor the minimal globalization is exact and surjects onto the space of
analytic vectors in a Banach space globalization [12].

Flag Spaces.By acomplex flag spacefor G0 we mean a complex projective homogeneous
G-spaceY. The complex flag spaces are constructed as follows. By definition, aBorel
subalgebraof g is a maximal solvable subalgebra. One knows thatG acts transitively on
the set of Borel subalgebras and the resulting homogeneous space is a complex projective
variety X called the full flag spacefor G0. A complex subalgebra that contains a Borel
subalgebra is called aparabolic subalgebraof g. If one fixes a Borel subalgebrab of g,
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then any parabolic subalgebra isG-conjugate to a unique parabolic subalgebra containing
b. The resulting spaceY of G-conjugates to a given parabolic subalgebra is a complex flag
space and each complex flag space is realized this way.

Let X denote the full flag space and supposeY is a complex flag space. Forx ∈ X
andy ∈ Y we letbx andpy indicate, respectively, the corresponding Borel and parabolic
subalgebras ofg. It follows from the above remarks that there exits a uniqueG-equivariant
projection

π : X →Y

given byπ(x) = y wherey∈Y is the unique point such thatbx ⊆ py. π is calledthe natural
projection.

We will need to treatY as both a complex analytic manifold with its sheaf of holo-
morphic functionsOY and as an algebraic varietyYalg with the Zariski topology and the
corresponding sheaf of regular functionsOYalg.

Generalized Sheaves of TDOs. LetU(g) denote the enveloping algebra ofg and letZ(g)
be the center ofU(g). By definition, ag-infinitesimal characteris a homomorphism of
algebras

Θ : Z(g)→ C.

By a fundamental result of Harish-Chandra, one can parametrize theg-infinitesimal char-
acters as follows. Leth∗ be theCartan dualfor g (definitions as in [4], Section 2 and
Section 3). There is a naturally defined set ofrootsΣ ⊆ h∗ for h in g and a corresponding
subset ofpositive rootsΣ+ ⊆ Σ. LetW denote the Weyl group forh∗ induced by the roots
of h in g. Then there is a natural 1-1 correspondence between the set ofg-infinitesimal
characters and the quotient

h∗/W.

Given λ ∈ h∗ and an infinitesimal characterΘ, we writeλ ∈ Θ to indicate thatΘ corre-
sponds to the Weyl group orbitW · λ in the given parametrization.Θ is calledregular
when the corresponding Weyl group orbit has the order ofW elements.λ ∈ h∗ is called
antidominantif

∨
α(λ ) /∈ {1,2,3, . . .} for each positive rootα ∈ Σ+ .

We also introduce the following notation: given ag-infinitesimal characterΘ we letUΘ
denote the algebra obtained as the quotient of the enveloping algebraU(g) by the ideal
generated from the ideal inZ(g) corresponding toΘ. In particular, aUΘ-module is just a
g-module with infinitesimal characterΘ.

To eachλ ∈ h∗, Beilinson and Bernstein associate a twisted sheaf of differential opera-
tors (TDO)Dalg

λ
defined on the algebraic varietyXalg [1]. In our parametrization, the sheaf

of differential operators onXalg is Dalg
−ρ , whereρ ∈ Σ+ is one half the sum of the positive

roots. Beilinson and Bernstein prove that

H p(Xalg,Dalg
λ

) = 0 for p > 0 and thatUΘ ∼= Γ(Xalg,Dalg
λ

)

whereΘ = W ·λ . In particular

Γ(Xalg,Dalg
λ

)∼= Γ(Xalg,Dalg
wλ

) for w∈W.
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Let π∗ denote the direct image in the category of sheaves. We consider thegeneralized
sheaf of TDOsπ∗(D

alg
λ

) defined onYalg. Observe that

UΘ = Γ(Yalg,π∗(D
alg
λ

))

whereΘ = W ·λ .
Given y ∈ Y let py be the corresponding parabolic subalgebra ofg and letuy denote

nilradical ofpy. TheLevi quotientis given by

ly = py/uy.

Since Cartan subalgebras ofg contained inpy are naturally identified with Cartan subalge-
bras ofly one can, in a natural way, identifyh∗ with the Cartan dual for the reductive Lie
algebraly. This defines a set of roots

ΣY ⊆ Σ

of h∗ in ly, and a Weyl groupWY ⊆W, generated by reflections coming from the elements
of ΣY. As suggested in the notation, these subsets are independent of the pointy. One
proves that

π∗(D
alg
λ

)∼= π∗(D
alg
wλ

) for w∈WY.

We say thatλ ∈ h∗ is antidominant for Yif λ is WY-conjugate to an antidominant ele-
ment ofh∗. Generalizing the result of Beilinson and Bernstein for the twisted sheaves of
differential operators onXalg, it has been show [7] that ifF is a quasicoherent sheaf of
π∗(D

alg
λ

)-modules onYalg and if λ is antidominant forY then

H p(Yalg,F ) = 0 for p > 0.

Algebraic and Analytic Localization. Given ag-moduleM with infinitesimal character
Θ and a choice ofλ ∈ Θ we define the (algebraic) localization ofM to Yalg as the sheaf of
π∗(D

alg
λ

)-modules given by

∆alg
λ

(M) = M⊗UΘ π∗(D
alg
λ

).

Thus
∆alg

λ
(M)∼= ∆alg

wλ
(M) for w∈WY.

Generalizing the Beilinson-Bernstein result for a full flag space, it can be shown that when
Θ is a regular infinitesimal character andλ ∈Θ is antidominant forY then the localization
functor and the global sections onYalg define an equivalence of categories between the
category ofUΘ-modules and the category of quasicoherentπ∗(D

alg
λ

)-modules [7].
While the algebraic localization functor yields interesting results when applied to Ha-

rish-Chandra modules, the analytic localization of Hecht and Taylor allows one to study the
geometric realization for the minimal globalization. Since the analytic localization takes
into account the topology of a module, we introduce a few relevant concepts. By definition,
a DNF spaceis topological vector space whose strong dual is a nuclear Fréchet space. A
DNF UΘ-moduleis ag-module with infinitesimal characterΘ, defined on a DNF spaceM
such that the corresponding linear operators

m 7→ ξ ·m for m∈M andξ ∈ g
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are continuous. Observe that a finitely generatedUΘ-module has a unique DNF topology,
when considered as a topological direct sum of finite dimensional subspaces.

Given λ ∈ h∗, let Dλ denote the corresponding TDO with holomorphic coefficients
defined on the complex manifoldX and consider the generalized TDOπ∗(Dλ ) defined on
the complex flag spaceY. Let OY denote the sheaf of holomorphic functions onY. Since
the sheafπ∗(Dλ ) is locally free as a sheaf ofOY-modules with countable geometric fiber,
there is a natural DNF topology defined on the space of sections ofπ∗(Dλ ) over compact
subsets ofY [9]. WhenM is a DNFUλ -module then, using the completed tensor product,
one can define a sheaf

∆λ (M) = π∗(Dλ )
∧
⊗Uλ

M

of π∗(Dλ )-modules carrying a natural topological structure defined over compact subsets
of Y. In case the induced topologies on the geometric fibers of∆λ (M) are Hausdorff, then
∆λ (M) is a DNF sheaf ofπ∗(Dλ )-modules [4].

Given aUΘ-moduleM, the Hochschild resolutionF·(M) of M is the canonical resolution
of M by freeUΘ-modules where

Fp(M) =⊗p+1UΘ⊗M.

WhenM is a DNFUΘ-module, thenF·(M) is a complex of DNFUΘ-modules and∆λ (F·(M))
is a functorially defined complex of DNF sheaves ofπ∗(Dλ )-modules calledthe analytic
localization of M to Y with respect toλ ∈ Θ = W ·λ . Observe that

∆λ (F·(M))∼= ∆wλ (F·(M)) for w∈WY.

It is not hard to show that this complex of sheaves has hypercohomology naturally iso-
morphic toM. We shall analyze in more detail the results of the analytic localization as
applied to minimal globalizations as our study advances, but right now we want to point
out that whenM is a minimal globalization thenG0 acts naturally on the homology sheaves
of ∆λ (F·(M)). In particular,G0 acts onF·(M) by the tensor product of the adjoint action
with the action onM. Although this action is not compatible with the leftg-action, the two
actions are homotopic. Coupling theG0-action onπ∗(Dλ ) with the G0-action onF·(M),
one obtains aG0-action on∆λ (F·(M)).

Localization and Geometric Fibers. In order to prove the comparison theorem in Sec-
tion 4, we will use some simple facts about the localization functors and geometric fibers,
which we summarize in the following two propositions. The first proposition says that, for
computing geometric fibers, the algebraic and analytic localizations yield the same result.
In particular, consider the sheavesOY onY andOYalg onYalg. Fix y∈Y. If F is sheaf of
OY-modules onY andH is a sheaf ofOYalg-modules onYalg, put

Ty(F ) = C⊗OY|yF and Talg
y (H ) = C⊗OYalg|yH

whereOY|y andOYalg|y denote the respective stalks ofOY andOYalg over the pointy. When
F is a sheafDλ -modules (H a sheaf ofDalg

λ
-modules) then, in a natural way,Ty(F )

(respectivelyTalg
y (H )), is a module for the corresponding Levi quotient.

Proposition 2.1. Let M be a DNF UΘ-module and chooseλ ∈ Θ. Let Y be a complex flag
space and choose y∈ Y. Letly denote the corresponding Levi quotient. Then there is a
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natural isomorphism
Ty◦∆λ (F•(M))∼= Talg

y ◦∆alg
λ

(F•(M))
of complexes ofly-modules.

Proof: Via the natural inclusion

π∗(D
alg
λ

)|y → π∗(Dλ )|y
one obtains an isomorphism

Talg
y (π∗(D

alg
λ

))∼= Ty(π∗(Dλ ))

of left ly-modules. Thus there is a corresponding a natural isomorphism

Talg
y (∆alg

λ
(N))∼= Ty(π∗(Dλ ))⊗UΘ N

whereN is a UΘ-module. On the hand, sinceTy(π∗(Dλ )) has countable dimension, it
follows that the natural inclusion determines an isomorphism

Ty(π∗(Dλ ))⊗UΘ N∼= Ty◦∆λ (N)

whenN is DNFUΘ-module.�

We will also use the following base change formulas. Let

Xy = π
−1({y}

be the fiber inX overy and let
i : Xy → X

denote the inclusion. Supposei−1 denotes the corresponding inverse image (in this case:
the restriction) in the category of sheaves. IfF is sheaf ofOX-modules onX andH is a
sheaf ofOXalg-modules onXalg, we put

i∗(F ) = OXy ⊗i−1(OX) i−l (F )

and
i∗alg(H ) = OXalg

y
⊗i−1(OXalg) i−l (H ).

WhenF is a sheafDλ -modules (H a sheaf ofDalg
λ

-modules) then, in a natural way,
Γ(Xy, i∗(F )) (respectivelyΓ(Xy, i∗alg(H ))), is a module for the corresponding Levi quo-
tient. The base change formulas are the following two results.

Proposition 2.2. Let M be a DNF UΘ-module and let N be a UΘ-module. Chooseλ ∈ Θ.
Let Y be a complex flag space and choose y∈ Y. Let∆X,λ and ∆Y,λ denote the corre-

sponding analytic localizations to X and Y and let∆alg
X,λ and∆alg

Y,λ denote the corresponding

algebraic localizations to Xalg and Yalg. Then, using the above notations, we have the
following natural isomorphisms of complexes ofly-modules:

(a) Ty◦∆Y,λ (F•(M))∼= Γ(Xy, i
? ◦∆X,λ (F•(M));

(b) Talg
y ◦∆alg

Y,λ (F•(N)) ∼= Γ(Xy, i
∗
alg◦∆alg

X,λ (F•(N)).

Proof: Equation (a) is shown in [4]. Proposition 3.3 and Equation (b) can be proved in
exactly the same way.�
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3. STANDARD MODULES IN FLAG SPACES

In this section we review the Matsuki duality, consider polarized representations for the
stabilizer and introduce the standard modules. We finish the section by summarizing a
result, due to Hecht and Taylor, that characterizes the analytic localization of a minimal
globalization to the full flag space.

Matsuki Duality. Let Y be a complex flag space. It is known thatG0 acts with finitely
many orbits in aY. We will need to use the following geometric property relating theG0

andK-actions inY, known asMatsuki duality. Let

θ : g→ g

denote the complexified Cartan involution arising fromK0 and let

τ : g→ g

denote the conjugation corresponding tog0. A subalgebra ofg is calledstable if it is
invariant under bothθ andτ. A point y∈Y is calledspecialif py contains a stable Cartan
subalgebra ofg. A G0-orbit Sis said to beMatsuki dualto aK-orbit Q whenS∩Q contains
a special point. Since it is known that the set of special points in aG0-orbit, or in aK-orbit,
forms a nonemptyK0-homogeneous submanifold it follows that Matsuki duality gives a
1-1 correspondence between theG0-orbits and theK-orbits onY [13].

Polarized Modules. Supposey∈Y and letG0[y] denote the stabilizer ofy in G0. Let

ω : G0[y]→GL(V)

be a representation in a finite-dimensional vector spaceV. A compatible, linearpy-action
in V is called apolarization if the nilradicaluy acts trivially. In other words: a polarized
G0[y]-module is a nothing but a finite-dimensional(ly,G0[y])-module. In casepy contains
a real Levi factor(that is: a complementary subalgebra to the nilradical that is invariant
underτ) then an irreducible representation always has a unique polarization, but in general
compatiblepy-actions need not exist. For example, supposec is a stable Cartan subalgebra
of g, b is a Borel subalgebra containingc andα ∈ c∗ is a simple root ofc in b. Let gα and
g−α denote the corresponding root subspaces ofc in g and define

py = g−α +b.

Thenp is a parabolic subalgebra ofg. Assume that the rootα is complex, that is:

p∩ τ(p) = c

and letC0 be the Cartan subgroup ofG0 corresponding toc. Then the character ofC0 given
by the adjoint action ofC0 in gα extends uniquely to a character ofG0[y] [5], but there is
no associated polarization.

Even though polarizations need not exist, they are unique when they do exist. In partic-
ular, supposeV is aG0[y]-module with two polarizations. Then there are twoly-actions in
V that coincide on a parabolic subalgebra ofly [5]. From the theory of finite-dimensional
ly-modules, it follows that the twoly-actions are identical.

On the other hand, ifV is a finite-dimensional irreducible(py,G0[y])-module then the
py-action is necessarily a polarization, since the subspace of vectors annihilated by each
element ofuy is invariant under bothG0[y] andpy.
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Since aG0[y]-invariant subspace of a polarized module need not be invariant under the
correspondingly-action, we define amorphism of polarized modulesto be a linear map that
intertwines both theG0[y] andpy-actions. Thus the category of polarizedG0[y]-modules is
nothing but the category of finite-dimensional(ly,G0[y])-modules.

Let Z(ly) denote the center of the enveloping algebraU(ly). Sinceh∗ is the Cartan dual
for ly, the set ofly-infinitesimal characters is in natural correspondence with the quotient

h∗/WY

whereWY is the Weyl group ofh∗ in ly. For λ ∈ h∗ we write σλ to indicate thely-infin-
itesimal character corresponding to the orbitWY ·λ . A polarizedG0[y]-moduleV is said
to haveinfinitesimal characterλ ∈ h∗ if Z(ly) acts onV by the characterσλ . SinceG0 is
Harish-Chandra class, it follows that an irreducible polarizedG0[y]-module has an infini-
tesimal character.

Giveny∈Y let K[y] denote the stabilizer ofy in K. By stipulating that theK[y]-action
be algebraic, we can introduce, in the obvious way, a category of polarized algebraicK[y]-
modules. Morphisms, as above, are linear maps that intertwine both theK[y] andly-actions.
We can also define and parametrize infinitesimal characters as in the case ofG0[y].

The following proposition can be deduced from the detailed description of the stabilizers
given in [5] via standard Lie theory considerations.

Proposition 3.1. Let Y be a complex flag space for G0 and suppose y∈Y is special. Then
there exists a natural equivalence of categories between the category of polarized G0[y]-
modules and the category of polarized algebraic K[y]-modules.

The Standard Modules in Flag Spaces.Supposey∈Y and let

ω : G0[y]→GL(V)

be an irreducible polarized representation. LetSdenote theG0-orbit of y. Then we have
the corresponding homogeneous, analytic vector bundle

V
↓
S

with fiber V. The polarization allows us to define, in a canonical way, a corresponding
sheaf of restricted holomorphic orpolarized sections. In particular, let

φ : G0 → S be the projectionφ(g) = g·y.

If U ⊆ S is an open set then a section ofV overU is a real analytic function

f : φ
−1(U)→V such that f (gp) = ω(p−1) f (g) ∀p∈G0[y].

The section is said to bepolarizedif

d
dt

∣∣∣∣
t=0

f (gexp(tξ1))+ i
d
dt

∣∣∣∣
t=0

f (gexp(tξ2)) =−ω(ξ1 + iξ2) f (g)

for all ξ1, ξ2 ∈ g0 such thatξ1 + iξ2 ∈ py.
Let P(y,V) denote the sheaf of polarized sections and letOY|S be the sheaf of restricted

holomorphic functions onS. As a sheaf ofOY|S-modules,P(y,V) is locally isomorphic to
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OY|S⊗V [9]. The left translation defines aG0, and thus ag-action onP(y,V). Let λ ∈ h∗

be a parameter for thely-infinitesimal character inV. Then theOY|S andg-actions deter-
mine aπ∗(Dλ )|S-action. PutΘ = W ·λ . Then the compactly supported sheaf cohomology
groups

H p
c (S,P(y,V)) p = 0,1,2,3, . . .

are DNFUΘ-modules with a compatibleG0-action, provided certain naturally defined
topologies are Hausdorff [9].

Supposey∈ S is special. LetQ be theK-orbit of y and letq be the codimension of the
complex manifoldQ in Y. In general, one can show the following. Although not difficult,
the proof in [6] depends on some ideas which we will not use in this study.

Proposition 3.2. Maintain the above notations.
(a) Hp

c (S,P(y,V)) vanishes for p< q.
(b) Hn+q

c (S,P(y,F)) n= 0,1,2, . . . is an admissible representation, naturally isomorphic
to the minimal globalization of its underlying Harish-Chandra module

Sincey is special, in a natural wayV is a polarized algebraicK[y]-module. ThusV
determines an algebraic vector bundle on theK-orbit Qalg. Thely-action inV, the transla-
tion by K, and the naturalOQalg-action determine the action by a certain sheaf of algebras,
defined onQalg, on the corresponding sheaf of algebraic sections [7]. Using a direct image
construction [7], modeled after the direct image for sheaves of TDOs modules [11], one
obtains astandard generalized Harish-Chandra sheafI (y,V) defined on the algebraic
varietyYalg. This sheaf ofOYalg-modules carries compatible actions ofg andK. Indeed,
I (y,V) is a sheaf ofπ∗(D

alg
λ

)-modules. One knows that the corresponding sheaf coho-
mology groups

Hp(Yalg,I (y,V)) p = 0,1,2, . . .

are Harish-Chandra modules.

Affinely Oriented Orbits. A K-orbit Q is calledaffinely embeddedif the inclusion

i : Qalg→Yalg

is an affine morphism. AG0-orbit is calledaffinely orientedif its Matsuki dual is affinely
embedded. Since the Matsuki dual of an open orbit is Zariski closed [13], it follows that
all openG0-orbits are affinely oriented. It is known that allK-orbits in the full flag space
are affinely embedded, and more generally, if a parabolic subalgebra in aG0-orbit contains
a real Levi factor, then the orbit is affinely oriented [8].

By definition, aLevi orbit is a G0-orbit containing a parabolic subalgebra with a real
Levi factor. In the previous studies [4] and [3] only Levi orbits were considered. On
the other hand, it is not hard to define affinely embedded orbits which are not Levi. For
example, consider the natural action of the real special linear groupG0 = SL(n,R) on the
complex projective spaceY = Pn−1(C). If n > 2, then there is a unique openG0-orbit and
this open orbit is not Levi. In the last section of this paper we will consider aG0-orbit
which is not affinely oriented.

Analytic Localization of Minimal Globalizations in the Full Flag Space. We conclude
this section with the following theorem, due to Hecht and Taylor, which characterizes

Actas del VIII Congreso Dr. Antonio A. R. Monteiro, 2005



12 TIM BRATTEN AND ESTHER GALINA

the analytic localization to the full flag space for the minimal globalization of a Harish-
Chandra module with regular infinitesimal character.

Theorem 3.3. Let M be a Harish-Chandra module with regular infinitesimal characterΘ
and chooseλ ∈ Θ. Let F·(Mmin) denote the Hochschild resolution for the minimal global-
ization of M and let

∆λ (F·(Mmin))
denote the corresponding analytic localization to the full flag space X. Fix x∈ X. Then we
have the following.
(a) Let G0[x] denote the stabilizer of x in G0. Then the homology spaces of the complex

Tx◦∆λ (F·(M))

are finite-dimensional polarized G0[x]-modules.
(b) Let S be the G0-orbit of x and let hp(∆λ (F·(M)))|S denote the p-th homology of
∆λ (F·(M)) restricted to S. Then hp(∆λ (F·(M)))|S is the sheaf of polarized sections cor-
responding to the polarized G0[x]-module

hp(Tx◦∆λ (F·(M))).

Proof: This result follows directly from Theorem 10.10, Proposition 8.3 and Proposition
8.7 in [9]. �

4. THE COMPARISONTHEOREM

In this section we generalize the Hecht-Taylor comparison theorem [10] to arbitrary
orbits. In particular, supposey∈Y is special, and letuy denote the nilpotent radical of the
corresponding parabolic subalgebra. We will establish the following theorem.

Theorem 4.1. Let M be a Harish-Chandra module with regular infinitesimal charac-
ter and suppose y is a special point. Assume that M has finite-dimensional uy-homology
groups and let Mmin denote the minimal globalization of M. Then, in a natural way, the Lie
algebra homology groups

Hp(uy,M) and Hp(uy,Mmin), p = 0,1,2, . . .

are polarized G0[y]-modules and the natural inclusion

M →Mmin

induces an isomorphism
Hp(uy,M)∼= Hp(uy,Mmin)

for each p.

Localization and uy-homology. SupposeM is auy-module. By definition

H0(uy,M) = C⊗uy M.

WhenM is ag-module thenH0(uy,M) is a module for the Levi quotient

ly = py/uy.

Theuy-homology groups ofM are the derived functors of the functor

M 7→ H0(uy,M).
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COMPARISON THEOREM AND GEOMETRIC REALIZATION OF REPRESENTATIONS 13

SinceU(g) is a freeU(uy)-module, it follows that a resolution of freeg-modules can be
used to compute theuy-homology groups. In particular, ifM is a Harish-Chandra module
and if F·(M) denotes the Hochschild resolution, thenK acts onF·(M) by the tensor prod-
uct of the adjoint action with the action onM. This action is then homotopic to the left
g-action. Thus one obtains aK[y]-action on the complexH0(uy,F·(M)) and a correspond-
ing algebraic(ly,K[y])-action on theuy-homology groups. Similarly, there is a continuous
G0[y]-action on the complex of DNFly-modulesH0(uy,F·(Mmin)). Thus, since these ac-
tions are homotopic, if the homology groups ofH0(uy,F·(Mmin)) are finite-dimensional
(and therefore Hausdorff in the induced topologies), it follows that the homology spaces

Hp(uy,Mmin) p = 0,1,2, . . .

are polarizedG0[y]-modules. WhenM is Harish-Chandra module with infinitesimal char-
acterΘ then one can use the Hochschild resolution with coefficients fromUΘ to compute
theuy-homology groups forM andMmin, sinceUΘ is a freeU(uy)-module. The induced
module structure on the homology groups is independent of these two resolutions.

Let Z(ly) denote the center ofU(ly) and supposeV is anly-module. For eachλ ∈ h∗ we
letVλ denote the correspondingZ(ly)-eigenspace inV. WhenΘ is a regularg-infinitesimal
character andM is aUΘ-module, then one knows that

Hp(uy,M) =
⊕
λ∈Θ

Hp(uy,M)λ .

Indeed, lettingF·(M) denote the Hochschild resolution ofM, with coefficients fromUΘ,
one can deduce that thep-th homology of the complexH0(uy,F•(M))λ calculates thely-
moduleHp(uy,M)λ [3].

Thus, to establish the comparison theorem for a Harish-Chandra module with regular in-
finitesimal characterΘ, it suffices to establish the result for each of the spacesHp(uy,M)λ .

To calculate the modulesHp(uy,M)λ , we use the fact they can be identified with the
derived functors of the geometric fiber aty of the corresponding localization toY. We state
this fact in the following proposition. A proof can be found in [3].

Proposition 4.2. Let M be a UΘ-module withΘ regular and let F•(M) denote the corre-
sponding Hochschild resolution of M. Chooseλ ∈ �. Suppose Y is a complex flag space
and let∆alg

λ
denote the corresponding algebraic localization to Y . Then, for each y∈ Y,

there is a natural isomorphism of complexes ofly-modules

Talg
y ◦∆alg

λ
(F•(M))∼= H0(uy,F•(M))λ .

The Comparison Theorem From the previous discussion, the comparison theorem fol-
lows from the next result, which we prove in this subsection.

Theorem 4.3. Let M be a Harish-Chandra module with regular infinitesimal characterΘ.
Suppose y is a special point in a complex flag space Y and letuy denote the nilradical of
the corresponding parabolic subalgebrapy. Supposeλ ∈ Θ and assume that each of the
algebraic(ly,K[y])-modules

Hp(uy,M)λ p = 0,1,2, . . .

is finite-dimensional. Then the natural inclusion

M →Mmin
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14 TIM BRATTEN AND ESTHER GALINA

induces an isomorphism
Hp(uy,M)λ

∼= Hp(uy,Mmin)λ

of polarized G0[y]-modules, for each p.

Proof: Since the spacesHp(uy,M)λ are finite-dimensional algebraic(ly,K[y])-modules
andy is special, these spaces are also polarizedG0[y]-modules. Indeed, in order to prove
the theorem it suffices to show thatHp(uy,M)λ and Hp(uy,Mmin)λ are isomorphic as
(ly,K0[y])-modules, whereK0[y] is the stabilizer ofy in K0.

Let X be the full flag space and letXy be the fiber inX overy. Let ΣY denote the root
subspace ofh∗ corresponding to Levi factors fromY and letWY denote the associated Weyl
group. Put

Σ+
Y = ΣY∩Σ+.

We say thatλ is antidominant for the fiberif
∨
α(λ ) /∈ {1,2,3, . . .} for eachα ∈ Σ+

Y .

Since there existsw∈WY such thatwλ is antidominant for the fiber and sincewλ andλ

parameterize the samely-infinitesimal character, we may assume thatλ is antidominant for
the fiber. Supposex∈ Xy and let

i : Xy → X

denote the inclusion. Reintroducing the notations established in Section 2, we now prove
the following lemma.

Lemma Maintaining the assumptions of Theorem 4.3, let

hp(i∗ ◦∆λ ,X(F·(M))

denote the p-th homology of the complex i∗ ◦∆λ ,X(F·(M). Then hp(i∗ ◦∆λ ,X(F·(M)) is the
sheaf of holomorphic sections of a K[y]-equivariant holomorphic vector bundle over Xy.

Proof of Lemma: By Proposition 2.2 and Proposition 4.2, it follows from the given
assumptions that the homology groups of the complex

Γ(Xalg
y , i∗alg◦∆alg

λ ,X(F·(M)))

are finite-dimensional algebraic(ly,Ky)-modules. We claim that this implies that the ho-
mologies of the complex

i∗alg◦∆alg
λ ,X(F·(M))

are the sheaves of sections forK[y]-equivariant algebraic vector bundles defined over the
algebraic varietyXalg

y . In particular, one knows thatXalg
y is the full flag space for the Levi

quotiently and that the homology groups of the previous complex are sheaves of modules
for a TDODalg

λ ,Xalg
y

defined onXalg
y . Since the parameterλ is antidominant with respect toly,

it follows that the global sections define an exact functor on the category of quasicoherent
Dalg

λ ,Xalg
y

-modules. Thus, for eachp = 0,1,2, . . ., there are natural isomorphisms

hp

(
Γ(Xalg

y , i∗alg◦∆alg
λ ,X(F·(M)))

)
∼= Γ(Xalg

y ,hp(i∗alg◦∆alg
λ ,X(F·(M))))

of finite-dimensional algebraic(ly,K[y])-modules, wherehp(·) denotes thep-th homology
group of the given complex. Therefore, our claim follows, since the only quasicoherent
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COMPARISON THEOREM AND GEOMETRIC REALIZATION OF REPRESENTATIONS 15

sheaves ofDalg

λ ,Xalg
y

-modules with finite-dimensional global sections are finite-rank locally

free sheaves ofOXalg
y

-modules.

Now let j : Xy → Xalg
y indicate the identity and let

ε (·) = OXy ⊗ j−1(O
X

alg
y

) j−1(·)

denote Serre’s GAGA functor [16]. We claim that

ε ◦hp(i∗alg◦∆alg
λ ,X(F·(M)))∼= hp

(
i∗ ◦∆λ ,X(F·(M))

)
.

Indeed, the claim follows, since there is a natural isomorphism of complexes of sheaves

ε ◦ i∗alg◦∆alg
λ ,X(F·(M))∼= i∗ ◦∆λ ,X(F·(M))

and since the functorε is exact on the category of quasicoherentOXalg
y

-modules. This
proves the lemma.�

We continue with the proof of Theorem 4.3 and establish the following lemma.

Lemma Use the given notations and maintain the assumptions of Theorem 4.3. Then the
natural morphism

i∗ ◦∆λ ,X(F·(M))→ i∗ ◦∆λ ,X(F·(Mmin))

of complexes of sheaves of(ly,K0[y])-modules, induces an isomorphism on the level of
homology groups.

Proof of Lemma: It follows from Theorem 3.3, that for eachx∈ X, the stalks of the ho-
mology sheaveshp

(
∆λ ,X(F·(Mmin)

)
are locally free, finite rankOX|x-modules. Therefore,

for eachx∈ Xy, the homology sheaves

hp
(
i∗ ◦∆λ ,X(F·(Mmin)

)
are locally free, finite rankOXy|x-modules. We now apply the comparison theorem of
Hecht and Taylor [10] to deduce the desired isomorphism. Forx∈ Xy, let Tx,Xy denote the
functor that takes the geometric fiber atx with respect to sheaves ofOXy-modules. Then
the Hecht-Taylor result implies that the natural morphism

Tx,Xy ◦ i∗ ◦∆λ ,X(F·(M))→ Tx,Xy ◦ i∗ ◦∆λ ,X(F·(Mmin))

induces an isomorphism on homology groups, whenx∈Xy is special. Thus for each special
pointx∈ Xy and for each whole numberp, we have a natural isomorphism

Tx,Xy ◦hp(i∗ ◦∆λ ,X(F·(M)))∼= Tx,Xy ◦hp
(
i∗ ◦∆λ ,X(F·(Mmin))

)
.

Thus the lemma follows, since there is a special point in eachG0[y]-orbit onXy [13]. �

We can now conclude that the natural morphism

Γ(Xy, i
∗ ◦∆λ ,X(F·(M)))→ Γ(Xy, i

∗ ◦∆λ ,X(F·(Mmin )))

induces an isomorphism on the level of homology groups. Thus the proof of Theorem 4.3
follows immediately by an application of Proposition 2.2, Proposition 2.1 and Proposi-
tion 4.2. �
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16 TIM BRATTEN AND ESTHER GALINA

5. GEOMETRIC REALIZATION OF REPRESENTATIONS

In this section we consider the relation of the comparison theorem to the geometric
realization of representations. In particular, supposey ∈ Y is a special point and letV
be an irreducible polarizedG0[y]-module. LetI (y,V) denote the corresponding gener-
alized standard Harish-Chandra sheaf defined onYalg. If λ ∈ h∗ is a parameter for the
ly-infinitesimal character inV then the sheaf cohomologies

H p(Yalg,I (y,F)) p = 0,1,2, . . .

are Harish-Chandra modules withg-infinitesimal characterΘ = W ·λ . Put

M = Γ(Yalg,I (y,F))

and letMmin denote the minimal globalization ofM. We are interested in finding a geomet-
ric realization forMmin in Y. One obvious candidate is the analytic localization ofMmin to
Y. In fact, supposeµ ∈ Θ and, using our previously established notation, let

∆µ(F·(Mmin))

denote the analytic localization ofMmin toY. It follows from the Beilinson-Bernstein result
that the sheaves∆µ(Fp(Mmin)) p = 0,1,2, . . . are acyclic for the functor of global sections
and that there is a natural isomorphism of complexes

Γ(Y,∆µ(F·(Mmin))∼= F·(Mmin).

Thus the complex∆µ(F·(Mmin)) has vanishing hypercohomology in all degrees except
zero, where we reobtain the moduleMmin. Indeed, when the infinitesimal characterΘ
is regular, one obtains the following uniqueness for this geometric realization ofMmin. Let
F· be a complex of sheaves of DNFπ∗(Dµ).-modules, with bounded homology, whose
hypercohomology realizes the moduleMmin, then there are natural isomorphisms in ho-
mology

hp(∆µ(F·(Mmin)))∼= hp(F·)
for eachp. In the case of the full flag space, this uniqueness follows from an equivalence
of derived categories shown in [9]. The general case is not hard to deduce from this.

Thus we would like to understand the complex∆µ(F·(Mmin)). It turns out that the struc-
ture of the analytic localization is completely determined by the corresponding geometric
fibers. In particular, we have the following result [4].

Proposition 5.1. Let W be a minimal globalization withg-infinitesimal characterΘ and
chooseλ ∈Θ. Suppose Y is a complex flag space for G0. Using the previously established
notation, let∆λ (F·(W)) denote the analytic localization of W to Y. Choose y∈Y and let
S= G0 ·y. Assume that each of the homology groups

hp(Ty◦∆λ (F·(W))) p = 0,1,2, . . .

is finite-dimensional. LetP(y,hp(Ty◦∆λ (F·(W)))) denote the sheaf of polarized sections
for the polarized homogeneous vector bundle on S determined by hp(Ty◦∆λ (F·(W))). Then
there is a natural isomorphism

hp(∆λ (F·(W)))|S∼= P(y,hp(Ty◦∆λ (F·(W))))

of G0-equivariant DNF sheaves ofg-modules.
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Base Change.The previous proposition, in conjunction with the comparison theorem, can
be used to deduce information about the geometric realization for the minimal globalization
of a generalized standard Beilinson-Bernstein module. There is a third ingredient we will
also use: the so-called base change formula [4], as applied to the derived geometric fibers of
the Harish-Chandra sheafI (y,V). In particular, letDb(π∗(D

alg
λ

)) (respectivelyDb(Uλ (ly))
denote the derived category of bounded complexes of quasi-coherentπ∗(D

alg
λ

)-modules
(respectively the derived category of bounded complexes ofly-modules with infinitesimal
characterλ ). Supposez∈Y. Then, in a natural way, the geometric fiber atz determines a
derived functor

LTz : Db(π∗(D
alg
λ

))→ Db(Uλ (ly)).

Let Q be theK-orbit of y and letQ be the Zariski closure ofQ in Y. Put ∂Q = Q−Q
andU = Y− ∂Q. ThusU is Zariski open. Letq denote the codimension ofQ in Y and
let V[q] denote the complex ofly-modules which is zero except in homology degreeq,
where one obtains the moduleV. We also identify the sheafI (y,V) with the complex in
Db(π∗(D

alg
λ

)) which is zero in all degrees except degree zero where we obtainI (y,V).
Then, at least forz∈U , the complexLTz(I (y,V)) is simple to understand. We summarize
in the following proposition.

Proposition 5.2. Maintain the previously introduced notations. Then we have the follow-
ing isomorphisms in Db(Uλ (ly)).
(a) For z∈U −Q

LTz(I (y,V))∼= 0.

(b) LTy(I (y,V))∼= V[q].

Proof: The result follows from the construction ofI (y,F) and the base change formula,
which holds for the generalized direct image, as in the case of the direct image forD-
modules [2].�

For z∈ ∂Q, the structure the complexLTz(I (y,V)) is more complicated, at least when
Qalg is not affinely embedded inYalg. In particular, let

i : Ualg→Yalg

denote the inclusion. We letπ∗(D
alg
λ

)|Ualg be the sheaf of algebrasπ∗(D
alg
λ

) restricted to

Ualg and letDb(π∗(D
alg
λ

)|Ualg) denote the derived category of bounded complexes of quasi-

coherentπ∗(D
alg
λ

)|Ualg-modules. Then the direct image in the category of sheaves induces
a derived functor

Ri∗ : Db(π∗(D
alg
λ

)|Ualg)→ Db(π∗(D
alg
λ

)).
We have the following.

Proposition 5.3. Maintain the previously introduced notations.
(a) Suppose z∈ ∂Q. Then

LTz◦Ri∗(I (y,V)|Ualg)∼= 0

in the category Db(Uλ (ly)).
(b) If Qalg is affinely embedded in Yalg then

Ri∗(I (y,V)|Ualg)∼= I (y,V).
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In particular
LTz(I (y,V))∼= 0

for z∈ ∂Q.

Proof: Once again, the first claim (a) is an application of the base change formula for
the generalized direct image, applied to the sheafI (y,V). On the other hand, the second
claim (b) is another standard result for the direct image functor [2], which also applies to
the direct image in the category of generalizedD-modules.�

Geometric Realization for the Minimal Globalization of a Standard Module.Suppose

M = Γ(Yalg,I (y,V))

is a standard Harish-Chandra module, wherey∈Y is special andV is an irreducible polar-
izedG0[y]-module. LetP(y,V) be the sheaf of polarized sections for the corresponding
G0 homogeneous polarized vector bundle and letMmin denote the minimal globalization of
M. We are now ready to deduce the following result, which generalizes the result for the
full flag space.

Theorem 5.4. Maintain the previous assumptions and notations. Let Q denote the K-orbit
of the special point y and let q denote the codimension of Q in Y. Assume thely-infinitesimal
character in V is regular and antidominant for Y and letλ ∈ h∗ be a corresponding pa-
rameter.
(a) Suppose S is the G0-orbit of y. Then

hp(∆λ (F·(Mmin))) |S∼=
{

0 for p 6= q
P(y,F) for p = q

.

(b) Suppose S is affinely oriented. Then

hp(∆λ (F·(Mmin)))∼=
{

0 for p 6= q
P(y,F)Y p = q

,

whereP(y,F)Y denotes the extension by zero ofP(y,F) to Y .

Proof: Sinceλ is regular and antidominant forY, it follows from the Beilnson-Bernstein
equivalence of categories that

hp

(
∆alg

λ
(F·(M))

)
∼=

{
0 for p 6= 0

I (y,V) for p = 0
.

Thus, forz∈ Y, the homologies of the complexTz◦ ∆alg
λ

(F·(M)) are isomorphic to the
homologies ofLTz(I (y,V)). Via the comparison theorem, the homology groups ofTz◦
∆alg

λ
(F·(M)) coincide with the homology groups ofTz◦∆λ (F·(Mmin)) when these homol-

ogy groups are finite dimensional. Thus the first part of the theorem follows by an appli-
cation of Proposition 5.2 together with Proposition 5.1, and the second part follows easily
using Proposition 5.3.�

Theorem 5.5. Suppose y∈ Y is special and that the K-orbit Qalg of y is affinely embed-
ded in Yalg. Suppose V is an irreducible polarized G0[y]-module. LetI (y,V) indicate the
corresponding standard Harish-Chandra sheaf on Yalg and letP(y,V) denote the corre-
sponding sheaf of polarized sections on the G0-orbit S of y. Suppose q is the codimension
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of Q in Y. Then the compactly supported cohomology group Hp
c (S,P(y,V)) vanishes for

p < q and for each n≥ 0, Hq+n
c (S,P(y,V)) is naturally isomorphic to the minimal glob-

alization of Hn(Y,I (y,V)).

Proof: WhenV has anly-infinitesimal character that is regular and antidominant for
Y, then the corollary follows immediately from the previous theorem. The general case
follows by a tensoring argument, as in [4].�

6. THE SU(n,1)-ACTION IN COMPLEX PROJECTIVESPACE

In this section we give an example to analyze the situation when theG0-orbit is not
affinely oriented. In particular, we show that Theorem 5.5 fails to hold. Put

J =
n

∑
j=1

E j j −En+1n+1

whereE jk are the standard basis for the(n+ 1)× (n+ 1) matrices and supposeG is the
complex special linear groupSL(n+1,C). Define

γ(A) = (At)−1 and τ(A) = Jγ(A)J

for A∈ G. Thusτ is a conjugation ofG andγ is a compact conjugation commuting with
τ. By definition, the fixed point set ofτ is the group

G0 = SU(n,1).

The correspondingγ-invariant maximal compact subgroup ofG0 is

K0 = SU(n+1)∩G0.

The complexificationK of K0 is naturally isomorphic to the fixed point set inG of the
involution

θ(A) = JAJ.

Thus the elements ofK are the matrices of the form
0

A
...
0

0 · · · 0 (detA)−1


whereA∈GL(n,C).

We calculate theK-orbits on the complex flag spaceY = Pn(C). For (z1, . . . ,zn+1) ∈
Cn+1 let  z1

...
zn+1


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denote the corresponding point inPn(C). Let U ⊆ Pn(C) be theK-invariant affine open
set defined byzn+1 6= 0. ThusU contains twoK-orbits: one consisting of a fixed point

Qfp =




0
...
0
1




and the other being the openK-orbit:

Qo = U −Qfp.

The complement ofU :
Qc = Pn(C)−U

is a closedK-orbit of dimensionn−1.
Matsuki duality now determines theG0-orbits onY. In particular, letSfp, So andSc

denote the dual orbits toQfp, Qo andQc, respectively. ThusSfp andSc are open orbits
while So is closed inY. Observe thatSfp andSc are affinely oriented whileSo is not when
n > 1. Using Iwasawa decomposition forG0, one sees thatK0 acts transitively onSo. In
particular,So ⊆Qo and each point inSo is special.

Let OY denote the sheaf of holomorphic functions onY and letOY|So denote the restric-
tion of OY to So. We also introduce sheafOYalg of regular functions on the algebraic variety
Yalg and let

i : Qalg
o →Yalg

denote the inclusion. Choose a pointy∈ So and letC denote trivial one-dimensional po-
larizedG0[y]-module. Then the corresponding sheafP(y,C) of polarized sections is the
G0-equivariant sheafOY|Soand the corresponding Harish-Chandra sheafI (y,C) is theK-
equivariant sheaf ofg-modulesi∗(OYalg|Qalg

o
) wherei∗ denotes the direct image in the cate-

gory of sheaves.
Let uy denote the nilradical of the parabolic subalgebrapy and let

ly = py/uy

denote the corresponding Levi quotient. Then thely-infinitesimal character for the trivial
moduleC is parametrized by−ρ, whereρ is one half the sum of the positive roots inh∗.
Since−ρ is regular and antidominant, it follows that

H p(Y,I (y,C)) = 0 for p > 0 and Γ(Y,I (y,C)) 6= 0.

By a direct calculation, it is not hard to show that the set ofK0-finite vectors in

Γ(So,OY|So) = Γ(So,P(y,C))

is naturally isomorphic to

Γ(Qo,OYalg|Qalg
o

) = Γ(Y,I (y,C))

although we shall give a different reason for this below. On the other hand, since the
codimension ofQo in Y is zero and sinceSo is compact, if the orbitQo were affinely
imbedded, it would follow from the work in the last section of this paper that

H p(So,P(y,C)) = 0 for p > 0.
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We now show that this vanishing does not occur whenn > 1.
If F is a sheaf defined on a locally closed subset ofY, we letFY denote the extension

by zero ofF to Y. To calculate the higher sheaf cohomologies ofOY|So we consider the
following short exact sequence ofG0-equivariant sheaves onY:

0→
(
OY|Sc∪Sfp

)Y → OY → (OY|So)
Y → 0.

We compute the resulting long exact sequence in sheaf cohomology. SinceSc andSfp are
open orbits, a standard sheaf cohomology argument shows that

H p(Y,
(
OY|Sc∪Sfp

)Y)∼= H p
c (Sc,OSc)⊕H p

c (Sfp,OSfp)

whereOSc andOSfp denote the sheaves of holomorphic functions onSc andSfp, respec-
tively. Since the codimension ofQc is one and the codimension ofQfp is n it follows from
Theorem 5.5 that

H p
c (Sc,OSc) = 0 for p 6= 1 and H p

c (Sfp,OSfp) = 0 for p 6= n

Indeed, via Kashiwara’s equivalence of categories for the direct image functor [7] one
deduces thatH1

c (Sc,OSc) andHn
c (Sfp,OSfp) are irreducible minimal globalizations. In par-

ticular, each of these last two cohomologies are nonzero. On the other hand, it is well
known that sheaf cohomology forOY vanishes in positive degree. Thus, forn > 1, we
obtain the short exact sequence

0→ C→Γ(So,P(y,C))→ H1
c (Sc,OSc)→ 0.

For positivep, it follows thatH p(So,P(y,C)) is zero except whenp = n, in which case
we obtain the isomorphism:

Hn−1(So,P(y,C))∼= Hn
c (Sfp,OSfp)

which contradicts Theorem 5.5.
We continue our analysis using the ideas developed in our study. Put

M = Γ(Y,I (y,C))

and letMmin denote the minimal globalization ofM. We calculate the analytic localization
of Mmin to Y and use this information to deduce that

Mmin
∼= Γ(S,P(y,C)).

Let
∆−ρ(F·(Mmin))

denote the corresponding analytic localization ofMmin to Y. By the comparison theorem,
for z∈Y special, the morphism of complexes

Talg
z ◦∆alg

−ρ(F·(M))→ Tz◦∆−ρ(F·(Mmin))

induces an isomorphism of homology groups, provided the left hand side has finite-dimen-
sional homology.

Therefore we are interested in calculating the homologies of

LTz(I (y,C))

for z∈Y−Qo. PutU = Qo∪Qfp. ThusU is a Zariski open set isomorphic toC2. Let

j : Qalg
o →Ualg and k : Ualg→Yalg
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denote the inclusions. Sincek∗(I (y,C)|Ualg) ∼= I (y,C) and sinceU is an affine open set
it follows from the base change that

LTz(I (y,C))∼= 0 for z∈Y−U.

On the other hand
I (y,C)|Ualg ∼= j∗(OYalg|Qalg

o
).

Thus if{z}= Qfp andn > 1 then

LTz(I (y,C))∼= C
since

j∗(OYalg|Qalg
o

)∼= OYalg|Ualg.

Therefore

hp(∆−ρ(F·(Mmin)))∼=
{

0 if p 6= 0(
OY|So∪Sfp

)Y
if p = 0

,

where
(
OY|So∪Sfp

)Y
denotes the extension by zero toY of the restriction of the sheaf of

holomorphic functions toSo∪Sfp. In particular,
(
OY|So∪Sfp

)Y
is the unique sheaf of DNF

modules for the sheaf of holomorphic differential operators onY whose sheaf cohomology
vanishes in positive degrees and whose global sections yieldMmin.

SinceP(y,C)∼= OY|So, we have the following short exact sequence:

0→
(
OY|Sfp

)Y →
(
OY|So∪Sfp

)Y →P(y,C)Y → 0.

Taking global sections we obtainMmin
∼= Γ(S, P(y,C)).
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