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COMPARISON THEOREM AND GEOMETRIC REALIZATION
OF REPRESENTATIONS

TIM BRATTEN AND ESTHER GALINA

ABSTRACT. In this paper we generalize the comparison theorem of Hecht and Taylor to
arbitrary parabolic subalgebras of a complex reductive Lie algebra and apply our general-
ized comparison theorem to obtain results about the geometric realization of representa-
tions in flag spaces.

1. INTRODUCTION

This manuscript concerns a homological property of representations for a reductive Lie
group, called the comparison theorem, and the relation this property has to the realization
of representations in complex flag spaces.

The realization of representations in complex flag spaces has historically played a cen-
tral role in the theory. One of the basic constructions, the parabolic induction, defines
representations as the sections of homogeneous vector bundles defined over certain closed
orbits in complex flag spaces. Schmid’s realization of the discrete series, generalizing
the Borel-Weil-Bott theorem, gave a defining alternative to the parabolic induction, find-
ing the missing representations on the sheaf cohomology groups of certain homogeneous
holomorphic line bundles defined on open orbits in full flag spaces.

The problem of understanding sheaf cohomologies of homogeneous holomorphic vec-
tor bundles turned out to be a bit tricky, and it took some time until general results were
obtained. Meanwhile, the localization theory of Beilinson and Bernstein [1] provided a
canonical geometric realization, defined in the full flag space, for any irreducible Harish-
Chandra modules. Via localization, many irreducible Harish-Chandra modules are nicely
realized as certain standard geometric objects (a precise criteria for this is known [14])
but in general one does not yet fully understand the localization of irreducible representa-
tions. The analytic localization theory of Hecht and Taylor [9] gives a global counterpart
to the Beilinson-Bernstein algebraic theory. A main result of the analytic theory shows that
the compactly supported cohomology of the polarized sections of an irreducible homoge-
neous vector bundle realizes the minimal globalization of the cohomology of an associated
standard Beilinson-Bernstein sheaf.

Although the Hecht-Taylor result constructs, for example, all of the tempered represen-
tations, many irreducible representations are not realized as standard modules in a full flag
space. Thus one considers analogous constructions defined on arbitrary flag spaces. Along
these lines, Wong [17] studied the representations obtained on the sheaf cohomologies
of finite rank homogeneous holomorphic vector bundles defined over certain open orbits
in generalized flag spaces, proving a special case of a conjecture by Vogan. Using the
methods of algebraic and analytic localization in flag spaces, a general version of Vogan’s
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conjecture has been shown and a realization for the Harish-Chandra modules defined by
cohomological parabolic induction was given [4].

In this study we consider how the mesh of localization theories works, in complete
generality, for complex flag spaces. As an intermediate result we obtain our Theorem 4.1,
which generalizes the Hecht-Taylor comparison theorem [10] to arbitrary orbits in flag
spaces, provided one makes a finiteness assumption. A main result, Theorem 5.5, applies
the generalized comparison theorem to show that the Hecht-Taylor realization of standard
modules extends naturally to a class of orbits we afilhely oriented(this includes all
open orbits, and therefore all the homogeneous holomorphic vector bundles). We finish
our study by analyzing an example showing how the situation works in the case where the
orbit in question is not affinely oriented. In particular, we illustrate how Theorem 5.5 fails
to hold.

This study is organized as follows. In Section 2 we introduce the algebraic and analytic
localization in flag spaces and establish some results we will use. In Section 3 we define
the standard modules. In Section 4 we prove the comparison theorem and in Section 5 we
establish our main result. In the last section we consideStli@, 1) action in complex
projective space and see how the main result fails when the orbit is not affinely oriented.

2. ALGEBRAIC AND ANALYTIC LOCALIZATION

In this section we introduce the minimal globalization, define the flag spaces, consider
the generalized TDOs and establish some facts about the algebraic and analytic localization
in complex flag spaces.

Throughout this studyGo denotes a reductive group of Harish-Chandra class with Lie
algebrago andg denotes the complexification g. We fix a maximal compact subgroup
Ko of Gg and letK denote the complexification dfy. G indicates the complex adjoint
group ofg.

Minimal Globalization. By definition, a Harish-Chandra modulés a finite-lengthg-
module equipped with a compatible, algebridi@action. For example, the set K-finite
vectors in an irreducible unitary representation@gris a Harish-Chandra module.

Let M be a Harish-Chandra module. dlobalizationof M means a finite-length, ad-
missible representation f@ in a complete, locally convex space whose underlying space
of Ko-finite vectors isM. By now there are known to exist several canonical and functo-
rial globalizations of Harish-Chandra modules, including the remarkabienal global-
ization, whose existence was first proved by Schmid [15]. The minimal globalization is
functorial and embeds continuously a@g-equivariantly in any corresponding globaliza-
tion. Indeed, as a functor the minimal globalization is exact and surjects onto the space of
analytic vectors in a Banach space globalization [12].

Flag Spaces.By acomplex flag spader Go we mean a complex projective homogeneous
G-spaceY. The complex flag spaces are constructed as follows. By definiti@uorel
subalgebraof g is a maximal solvable subalgebra. One knows tBaicts transitively on

the set of Borel subalgebras and the resulting homogeneous space is a complex projective
variety X calledthe full flag spacdor Gy. A complex subalgebra that contains a Borel
subalgebra is called parabolic subalgebraf g. If one fixes a Borel subalgebtaof g,
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then any parabolic subalgebraGsconjugate to a unique parabolic subalgebra containing
b. The resulting spaceé of G-conjugates to a given parabolic subalgebra is a complex flag
space and each complex flag space is realized this way.

Let X denote the full flag space and suppdsés a complex flag space. Fare X
andy € Y we letby andpy indicate, respectively, the corresponding Borel and parabolic
subalgebras df. It follows from the above remarks that there exits a uniGuequivariant
projection

T:X—=Y

given byr(x) =y wherey € Y is the unique point such tha C py. 7 is calledthe natural
projection

We will need to trealy as both a complex analytic manifold with its sheaf of holo-
morphic functionsty and as an algebraic varie%f'9 with the Zariski topology and the
corresponding sheaf of regular functiofigay.

Generalized Sheaves of TDQsLetU (g) denote the enveloping algebragénd letZ(g)
be the center o) (g). By definition, ag-infinitesimal characteiis a homomorphism of
algebras

©:2(g) —C.

By a fundamental result of Harish-Chandra, one can parametrizeitifmitesimal char-
acters as follows. Lei* be theCartan dualfor g (definitions as in [4], Section 2 and
Section 3). There is a naturally defined setaafts> C h* for h in g and a corresponding
subset ofositive roots> ™ C 3. LetW denote the Weyl group fdy* induced by the roots
of h in g. Then there is a natural 1-1 correspondence between the genfifitesimal
characters and the quotient

b /W.
Given A € h* and an infinitesimal charact&, we write A € © to indicate tha® corre-
sponds to the Weyl group orbi¥/ - A in the given parametrization® is calledregular
when the corresponding Weyl group orbit has the ordaNaflements.A € h* is called
antidominantf

gc(l) ¢ {1,2,3,...} for each positive roott € =" .

We also introduce the following notation: giverganfinitesimal characte® we letUg
denote the algebra obtained as the quotient of the enveloping aldépyeby the ideal
generated from the ideal i(g) corresponding t®. In particular, &Jg-module is just a
g-module with infinitesimal charact@.

To eachA € h*, Beilinson and Bernstein associate a twisted sheaf of differential opera-
tors (TDO)_@,ELIIg defined on the algebraic varieXf'? [1]. In our parametrization, the sheaf
of differential operators oX29 is .@f',?, wherep € =1 is one half the sum of the positive
roots. Beilinson and Bernstein prove that

HP(X®9, 729 = 0 for p> 0 and thatle 2 I'(X39, 72'9)
where® =W - A. In particular

X8, 99 =1 (x%,229) forwe w.
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Let ., denote the direct image in the category of sheaves. We considgetiegalized
sheaf of TDOg, (%39 defined onv@9. Observe that

Uo = [ (Y®9, z.(229))

where®@ =W - 1.
Giveny €Y let py be the corresponding parabolic subalgebrg @ind letu, denote
nilradical ofp,. TheLevi quotientis given by

ly = py/uy.
Since Cartan subalgebrasgé€ontained irpy are naturally identified with Cartan subalge-

bras ofly one can, in a natural way, identify’ with the Cartan dual for the reductive Lie
algebraly. This defines a set of roots

2y CX

of h* in ly, and a Weyl group\ C W, generated by reflections coming from the elements
of Zy. As suggested in the notation, these subsets are independent of thg.pGine
proves that

(739 = 7 (229) forw e W.
We say thatl € h* is antidominant for Yif A is Wy-conjugate to an antidominant ele-
ment ofh*. Generalizing the result of Beilinson and Bernstein for the twisted sheaves of
differential operators oX29, it has been show [7] that i? is a quasicoherent sheaf of
7.(23'9)-modules orv@9 and if A is antidominant folY then

HP(Y39 #)=0 forp>O0.

Algebraic and Analytic Localization. Given ag-moduleM with infinitesimal character
© and a choice of. € © we define the (algebraic) localization Mfto Y29 as the sheaf of
r.(23%)-modules given by

AO(M) = M &y, 7.(Z39).

Thus

AZ9M) = A29(M) for w e W
Generalizing the Beilinson-Bernstein result for a full flag space, it can be shown that when
O is a regular infinitesimal character aidd= © is antidominant folY then the localization
functor and the global sections &ff'9 define an equivalence of categories between the
category olJg-modules and the category of quasicohemmwj'g)-modules [7]

While the algebraic localization functor yields interesting results when applied to Ha-
rish-Chandra modules, the analytic localization of Hecht and Taylor allows one to study the
geometric realization for the minimal globalization. Since the analytic localization takes
into account the topology of a module, we introduce a few relevant concepts. By definition,
a DNF spaceis topological vector space whose strong dual is a nuclear Fréchet space. A
DNF Ug-moduleis ag-module with infinitesimal charact®, defined on a DNF spadd
such that the corresponding linear operators

m—&-m formeMand§ e g
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are continuous. Observe that a finitely generatgemodule has a unique DNF topology,
when considered as a topological direct sum of finite dimensional subspaces.

Given A € b*, let 2, denote the corresponding TDO with holomorphic coefficients
defined on the complex manifokXi and consider the generalized TD£X 2, ) defined on
the complex flag spacé. Let £y denote the sheaf of holomorphic functionsYonSince
the sheafr,(2,) is locally free as a sheaf @fy-modules with countable geometric fiber,
there is a natural DNF topology defined on the space of sectiong&f; ) over compact
subsets o¥ [9]. WhenM is a DNFU, -module then, using the completed tensor product,
one can define a sheaf

A
8y (M) = 7.(Z) ®u, M
of m.(2;)-modules carrying a natural topological structure defined over compact subsets
of Y. In case the induced topologies on the geometric fibefs 0f) are Hausdorff, then
A (M) is a DNF sheaf oft, (2, )-modules [4].

Given aUg-moduleM, the Hochschild resolutioR (M) of M is the canonical resolution
of M by freeUg-modules where

Fo(M) = @PUg @ M.

WhenM is a DNFUg-module, ther (M) is a complex of DNRJg-modules and, (F.(M))
is a functorially defined complex of DNF sheavesmf %, )-modules calledhe analytic
localization of M to Y with respect tb € © =W -A. Observe that

[ (FE(M)) =2 A (F(M)) forweW.

It is not hard to show that this complex of sheaves has hypercohomology naturally iso-
morphic toM. We shall analyze in more detail the results of the analytic localization as
applied to minimal globalizations as our study advances, but right now we want to point
out that wherM is a minimal globalization the@ acts naturally on the homology sheaves

of Ay (F.(M)). In particular,Gg acts onF.(M) by the tensor product of the adjoint action
with the action orM. Although this action is not compatible with the Igfaction, the two
actions are homotopic. Coupling tk&-action onz.(Z, ) with the Gg-action onF.(M),

one obtains &p-action onA, (F.(M)).

Localization and Geometric Fibers. In order to prove the comparison theorem in Sec-
tion 4, we will use some simple facts about the localization functors and geometric fibers,
which we summarize in the following two propositions. The first proposition says that, for
computing geometric fibers, the algebraic and analytic localizations yield the same result.
In particular, consider the sheavég onY and &y on Yalg Fix yeVY. If Z is sheaf of
Oy-modules orY and.Z is a sheaf 07 a-modules ory29, put

Ty(F) =C&4,F and T9A)=Cxy,
wheredy |y and Oya|y denote the respective stalks@f§ anddyaq over the pointy. When

F is a sheaf?,-modules ¢# a sheaf of%2%-modules) then, in a natural wa¥y(.%)
(respectiverTya'g(%”)), is a module for the corresponding Levi quotient.

H

alg\y

Proposition 2.1. Let M be a DNF y-module and choosg € ©. LetY be a complex flag
space and chooseg Y. Letly, denote the corresponding Levi quotient. Then there is a
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natural isomorphism
Tyo iy (Fa(M)) = TA90 AT9(F, (M)
of complexes df-modules.

Proof: Via the natural inclusion
|
. (25°)ly = m(Za)ly
one obtains an isomorphism
I\ ~
T (2,9) = Ty(m.(2))
of left [,-modules. Thus there is a corresponding a natural isomorphism
I ~
T9(AT0N)) = Ty(n.(Z2)) @uo N
whereN is aUg-module. On the hand, sincg(r.(Z,)) has countable dimension, it
follows that the natural inclusion determines an isomorphism
Ty(m.(Z2)) ®ue N = Tyo 4 (N)
whenN is DNFUg-module.l

We will also use the following base change formulas. Let

Xy =n"*({y}
be the fiber inX overy and let
Xy —X
denote the inclusion. Suppose* denotes the corresponding inverse image (in this case:
the restriction) in the category of sheaves4fis sheaf of¢’x-modules onX and.7Z is a
sheaf of0yag-modules orX?9, we put
i*(F) = Ox, @101 (F)
and
it ().

ﬁxalg

|g|g(%) = ﬁxyalg ®i—1(

When .# is a sheaf?,-modules 7 a sheaf of@;"'g—modules) then, in a natural way,
F(Xy,i*(#)) (respectivelyl” (Xy,i34(2"))), is a module for the corresponding Levi quo-
tient. The base change formulas are the following two results.

Proposition 2.2. Let M be a DNF -module and let N be agtmodule. Choosé € ©.
Let Y be a complex flag space and chooseY. LetAy ; andAy; denote the corre-
sponding analytic localizations to X and Y andztét%L andAf‘('_% denote the corresponding

algebraic localizations to X9 and Y&9. Then, using the above notations, we have the
following natural isomorphisms of complexedemodules:

(8) Ty oAy (Fa(M)) =T (X, 1" 0 B 4 (Fu(M));
(b) T90 39 (Fu(N)) =T (Xy,iziq 0855 (Fu(N)).

Proof: Equation (a) is shown in [4]. Proposition 3.3 and Equation (b) can be proved in
exactly the same wayl
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3. STANDARD MODULES IN FLAG SPACES

In this section we review the Matsuki duality, consider polarized representations for the
stabilizer and introduce the standard modules. We finish the section by summarizing a
result, due to Hecht and Taylor, that characterizes the analytic localization of a minimal
globalization to the full flag space.

Matsuki Duality. LetY be a complex flag space. It is known tl@ag acts with finitely
many orbits in &. We will need to use the following geometric property relating Ge
andK-actions inY, known asMatsuki duality Let

6:g—9g
denote the complexified Cartan involution arising frgand let

T.g—9
denote the conjugation correspondinggto A subalgebra ofy is calledstableif it is
invariant under botl® andz. A pointy €Y is calledspecialif py contains a stable Cartan
subalgebra ofi. A Go-orbit Sis said to beMatsuki duato aK-orbit Q whenSN Q contains
a special point. Since it is known that the set of special pointsGg-arbit, or in aK-orbit,

forms a nonemptKo-homogeneous submanifold it follows that Matsuki duality gives a
1-1 correspondence between tBgorbits and thé<-orbits onY [13].

Polarized Modules Suppose € Y and letGply] denote the stabilizer ofin Go. Let
o : Goly] — GL(V)

be a representation in a finite-dimensional vector spaca compatible, lineapy-action

inV is called apolarizationif the nilradicaluy acts trivially. In other words: a polarized
Goly]-module is a nothing but a finite-dimensior{gJ, Go[y])-module. In casey contains

areal Levi factor(that is: a complementary subalgebra to the nilradical that is invariant
underrt) then an irreducible representation always has a unique polarization, but in general
compatiblepy-actions need not exist. For example, supposea stable Cartan subalgebra

of g, b is a Borel subalgebra containin@nda € ¢* is a simple root of in b. Let g% and

g~ % denote the corresponding root subspacesiofy and define

py — g—OC + b
Thenp is a parabolic subalgebra gf Assume that the roat is complex, that is:

pNT(p)=c

and letCy be the Cartan subgroup @b corresponding te. Then the character & given
by the adjoint action o€ in g* extends uniquely to a character@®g|y] [5], but there is
no associated polarization.

Even though polarizations need not exist, they are unique when they do exist. In partic-
ular, suppos¥ is aGo|y]-module with two polarizations. Then there are ti@ctions in
V that coincide on a parabolic subalgebra,of]. From the theory of finite-dimensional
ly-modules, it follows that the twg-actions are identical.

On the other hand, ¥ is a finite-dimensional irreduciblépy, Go[y])-module then the
py-action is necessarily a polarization, since the subspace of vectors annihilated by each
element ofuy is invariant under botiBoly] andpy.
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Since aGo[y]-invariant subspace of a polarized module need not be invariant under the
corresponding-action, we define enorphism of polarized modulés be a linear map that
intertwines both th&y[y| andpy-actions. Thus the category of polarizég]y|-modules is
nothing but the category of finite-dimensiorigl, Goly])-modules.

Let Z(ly) denote the center of the enveloping algeld(®,). Sincebh* is the Cartan dual
for ly, the set ofly-infinitesimal characters is in natural correspondence with the quotient

h*/\Wy
whereW is the Weyl group oh* in [y. ForA € h* we write o, to indicate thely-infin-
itesimal character corresponding to the okbft- . A polarizedGg|y]-moduleV is said
to haveinfinitesimal charactei € h* if Z(ly) acts onV by the charactes;, . SinceGo is
Harish-Chandra class, it follows that an irreducible polari@gfy|-module has an infini-
tesimal character.

Giveny €Y letK][y|] denote the stabilizer ofin K. By stipulating that th&[y]-action
be algebraic, we can introduce, in the obvious way, a category of polarized alg€byaic
modules. Morphisms, as above, are linear maps that intertwine bdttyhendiy-actions.

We can also define and parametrize infinitesimal characters as in the cagg]of

The following proposition can be deduced from the detailed description of the stabilizers

given in [5] via standard Lie theory considerations.

Proposition 3.1. Let Y be a complex flag space fog @1d suppose g Y is special. Then
there exists a natural equivalence of categories between the category of polagped G
modules and the category of polarized algebrajg|Knodules.

The Standard Modules in Flag Spaces.Supposeg/ € Y and let
o : Goly] — GL(V)

be an irreducible polarized representation. Setenote theGg-orbit of y. Then we have
the corresponding homogeneous, analytic vector bundle

\%

!
S

with fiber V. The polarization allows us to define, in a canonical way, a corresponding
sheaf of restricted holomorphic polarized sectionsin particular, let

¢ :Gp— S be the projectio®(g) =g-V.
If U C Sis an open set then a section¥bverU is a real analytic function
f:¢1(U) -V suchthatf(gp) = w(p ) f(g) Vpe Goly.
The section is said to b@olarizedif
|, f(OetE) i G| f(gexnté) = ~ola+ig) (o)

for all &1, & € go such that, +i&; € py.
Let Z(y,V) denote the sheaf of polarized sections andigk be the sheaf of restricted
holomorphic functions of. As a sheaf of’y|s-modules,#(y,V) is locally isomorphic to
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Ov|s®V [9]. The left translation defines@y, and thus g-action on#(y,V). Let A € h*
be a parameter for thig-infinitesimal character iv. Then thedy|s andg-actions deter-
mine ar. (%, )|s-action. Pu® =W - 4. Then the compactly supported sheaf cohomology
groups
HCp(S7 ‘@(yav)) p = 07 1a 2> 37 ce

are DNFUg-modules with a compatibl&p-action, provided certain naturally defined
topologies are Hausdorff [9].

Suppose € Sis special. LeQ be theK-orbit of y and letq be the codimension of the
complex manifoldQ in Y. In general, one can show the following. Although not difficult,
the proof in [6] depends on some ideas which we will not use in this study.

Proposition 3.2. Maintain the above notations.

(@) HE(S, 2 (y,V)) vanishes for p< g.

(b) H™Y(S, 2 (y,F)) n=0,1,2,... is an admissible representation, naturally isomorphic
to the minimal globalization of its underlying Harish-Chandra module

Sincey is special, in a natural way is a polarized algebraik[y]-module. Thusv/
determines an algebraic vector bundle onKherbit Q¥9. Thel,-action inV, the transla-
tion by K, and the naturalae-action determine the action by a certain sheaf of algebras,
defined orQ9, on the corresponding sheaf of algebraic sections [7]. Using a direct image
construction [7], modeled after the direct image for sheaves of TDOs modules [11], one
obtains astandard generalized Harish-Chandra shea#f(y,V) defined on the algebraic
varietyYa'g. This sheaf oi0yag-modules carries compatible actionsgoédndK. Indeed,
A (y,V) is a sheaf ofzr*(.@;"g)-modules. One knows that the corresponding sheaf coho-
mology groups

HP(Y39, 7 (yV)) p=0,1,2,...

are Harish-Chandra modules.

Affinely Oriented Orbits. A K-orbit Q is calledaffinely embeddeif the inclusion
i Qalg _ Yalg

is an affine morphism. A5qg-orbit is calledaffinely orientedf its Matsuki dual is affinely
embedded. Since the Matsuki dual of an open orbit is Zariski closed [13], it follows that
all openGg-orbits are affinely oriented. It is known that &lorbits in the full flag space

are affinely embedded, and more generally, if a parabolic subalgeb@gioebit contains

a real Levi factor, then the orbit is affinely oriented [8].

By definition, aLevi orbitis a Gyp-orbit containing a parabolic subalgebra with a real
Levi factor. In the previous studies [4] and [3] only Levi orbits were considered. On
the other hand, it is not hard to define affinely embedded orbits which are not Levi. For
example, consider the natural action of the real special linear gggup SL(n,R) on the
complex projective spacé = P"~1(C). If n> 2, then there is a unique op&y-orbit and
this open orbit is not Levi. In the last section of this paper we will consid&p-@rbit
which is not affinely oriented.

Analytic Localization of Minimal Globalizations in the Full Flag Space. We conclude
this section with the following theorem, due to Hecht and Taylor, which characterizes
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the analytic localization to the full flag space for the minimal globalization of a Harish-
Chandra module with regular infinitesimal character.

Theorem 3.3. Let M be a Harish-Chandra module with regular infinitesimal chara®er
and choosél € ©. Let F(Mpin) denote the Hochschild resolution for the minimal global-
ization of M and let

A5, (F.(Mmin))
denote the corresponding analytic localization to the full flag space X. EiXx Then we
have the following.
(a) Let &[x] denote the stabilizer of x ind>Then the homology spaces of the complex

Txo Ay (F.(M))

are finite-dimensional polarizeddB|-modules.

(b) Let S be the gorbit of x and let (A, (F.(M)))|s denote the p-th homology of
A5 (F(M)) restricted to S. ThendiA, (F.(M)))|s is the sheaf of polarized sections cor-
responding to the polarizedd|-module

hp(Txo A, (F.(M))).
Proof: This result follows directly from Theorem 10.10, Proposition 8.3 and Proposition
8.7in[9].1
4. THE COMPARISON THEOREM

In this section we generalize the Hecht-Taylor comparison theorem [10] to arbitrary
orbits. In particular, supposec Y is special, and lety denote the nilpotent radical of the
corresponding parabolic subalgebra. We will establish the following theorem.

Theorem 4.1. Let M be a Harish-Chandra module with regular infinitesimal charac-
ter and suppose y is a special point. Assume that M has finite-dimensighamblogy
groups and let My, denote the minimal globalization of M. Then, in a natural way, the Lie
algebra homology groups

Hp(uy,M) and Fb(uy, Mmin), p: 0, 1, 2,
are polarized @[y|]-modules and the natural inclusion
M — Mmin

induces an isomorphism
Hp(uy, M) = Hp(uy, Mmin)
for each p.

Localization and uy-homology. SupposéM is auy-module. By definition
Ho(uy, M) = C®,, M.
WhenM is ag-module therHp(uy, M) is @ module for the Levi quotient
[y = py/uy.
Theuy-homology groups oM are the derived functors of the functor
M — Ho(uy, M).
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SinceU (g) is a freeU (uy)-module, it follows that a resolution of frgemodules can be
used to compute thg,-homology groups. In particular, M is a Harish-Chandra module
and if (M) denotes the Hochschild resolution, th€racts onF.(M) by the tensor prod-
uct of the adjoint action with the action dvi. This action is then homotopic to the left
g-action. Thus one obtainskiy|-action on the compleko(uy, F.(M)) and a correspond-
ing algebraidly, K[y])-action on thei,-homology groups. Similarly, there is a continuous
Goly]-action on the complex of DNF-modulesHo(uy, F.(Mmin)). Thus, since these ac-
tions are homotopic, if the homology groups 8§ (uy, F.(Mmin)) are finite-dimensional
(and therefore Hausdorff in the induced topologies), it follows that the homology spaces

Hp(uy,Mmin) p=0,1,2,...

are polarized>o[y]-modules. WheM is Harish-Chandra module with infinitesimal char-
acter® then one can use the Hochschild resolution with coefficients fdgno compute
the uy-homology groups foM andMmin, sinceUg is a freeU (uy)-module. The induced
module structure on the homology groups is independent of these two resolutions.

Let Z(ly) denote the center &f (Iy) and suppos¥ is anly-module. For eaciA € h* we
letV, denote the correspondijly)-eigenspace iN. WhenQ is a regulag-infinitesimal
character ant! is aUg-module, then one knows that

Hp(uva) - @ HP(uY7M)7L-
A€O
Indeed, letting~. (M) denote the Hochschild resolution bf, with coefficients fromJe,
one can deduce that theeth homology of the compleklp(uy, Fo(M)), calculates they-
moduleHp(uy, M)y [3].

Thus, to establish the comparison theorem for a Harish-Chandra module with regular in-
finitesimal characte®, it suffices to establish the result for each of the spatga,, M), .

To calculate the moduleld,(uy, M), we use the fact they can be identified with the
derived functors of the geometric fibenedf the corresponding localization Yo We state
this fact in the following proposition. A proof can be found in [3].

Proposition 4.2. Let M be a ly-module with® regular and let E(M) denote the corre-
sponding Hochschild resolution of M. Choakes . Suppose Y is a complex flag space
and IetAf{'g denote the corresponding algebraic localization to Y. Then, for eaelYy
there is a natural isomorphism of complexesyamodules
I ~

Ty9 0 85 %(Fa(M)) = Ho(uy, Fu(M))2.
The Comparison Theorem From the previous discussion, the comparison theorem fol-
lows from the next result, which we prove in this subsection.

Theorem 4.3. Let M be a Harish-Chandra module with regular infinitesimal chara®er
Suppose y is a special point in a complex flag space Y ang ¢note the nilradical of
the corresponding parabolic subalgebya Supposel € © and assume that each of the
algebraic(ly, K[y])-modules

Hp(uy,M),l p=0,1,2,...
is finite-dimensional. Then the natural inclusion
M— Mmin
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induces an isomorphism
Hp(1ty,M)3 = Hp(1ty, Mmin)2
of polarized G|y]-modules, for each p.

Proof: Since the spaced,(uy, M), are finite-dimensional algebraig, K[y])-modules
andy is special, these spaces are also polariZglg]-modules. Indeed, in order to prove
the theorem it suffices to show thki,(uy,M), and Hp(uy, Mmin), are isomorphic as
(Iy, Koly])-modules, wher&oly] is the stabilizer of in Ko.

Let X be the full flag space and 1&, be the fiber inX overy. Let Xy denote the root
subspace d§* corresponding to Levi factors frofand letW, denote the associated Weyl
group. Put

5 =%ynNIt.
We say thafd is antidominant for the fibeif

a(A) ¢{1,2,3,...} foreacha ¢ 3.
Since there existe € Wy such thatwA is antidominant for the fiber and sinegl andA
parameterize the samginfinitesimal character, we may assume thas antidominant for
the fiber. Supposec X, and let
denote the inclusion. Reintroducing the notations established in Section 2, we now prove
the following lemma.
Lemma Maintaining the assumptions of Theorem 4.3, let

hp(i* oAy x (F.(M))

denote the p-th homology of the complexA; x (F.(M). Then hy(i* oAy x(F.(M)) is the
sheaf of holomorphic sections of gykequivariant holomorphic vector bundle ovey. X

Proof of Lemma: By Proposition 2.2 and Proposition 4.2, it follows from the given
assumptions that the homology groups of the complex

(6519, 15160 A5% (F.(M)))
are finite-dimensional algebraig,, Ky)-modules. We claim that this implies that the ho-
mologies of the complex
lag® A3 % (F-(M))
are the sheaves of sections #ly|]-equivariant algebraic vector bundles defined over the

algebraic variet)?. In particular, one knows tha€?'? is the full flag space for the Levi
quotiently and that the homology groups of the previous complex are sheaves of modules

for aTDO.@alg , defined onX2'%. Since the parametéris antidominant with respect g,

it follows that the global sections define an exact functor on the category of quasicoherent

.@;limg -modules. Thus, for eagh=0,1,2,..., there are natural isomorphisms
Y

o (0412190 A5% (F(M))) ) 2 T (X519, (g0 A5 (F.(M))))

of finite-dimensional algebraidy, K[y])-modules, wheréy(-) denotes thg-th homology
group of the given complex. Therefore, our claim follows, since the only quasicoherent
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sheaves 07?9
A X

Ny
free sheaves oﬁxa|g-modules.
y

ag-modules with finite-dimensional global sections are finite-rank locally

Now let j : X, — X3 indicate the identity and let
e(r)=0Ox, ®j*1(/fx)?|g) i)
denote Serre’s GAGA functor [16]. We claim that
£ 0 hp(izigo 85 % (F(M))) 2 hy (i 0 8y x (F.(M))).
Indeed, the claim follows, since there is a natural isomorphism of complexes of sheaves
£0iyg0 A% (F.(M)) =i 0 Ay x (F.(M))
and since the functog is exact on the category of quasicoherﬁ;(rf@-modules. This
proves the lemmdll
We continue with the proof of Theorem 4.3 and establish the following lemma.

Lemma Use the given notations and maintain the assumptions of Theorem 4.3. Then the
natural morphism

i* OA)L,X“:-(M)) —i* OALx(F.(Mmin))

of complexes of sheaves f, Koly])-modules, induces an isomorphism on the level of
homology groups.

Proof of Lemma: It follows from Theorem 3.3, that for eache X, the stalks of the ho-
mology sheavehy, (A, x (F.(Mmin)) are locally free, finite rankix |-modules. Therefore,
for eachx € Xy, the homology sheaves

hp (i* OAA,X(F(Mmin))

are locally free, finite rank0x |x-modules. We now apply the comparison theorem of
Hecht and Taylor [10] to deduce the desired isomorphism.xFoK,, let Ty x, denote the
functor that takes the geometric fibenatvith respect to sheaves &fx -modules. Then
the Hecht-Taylor result implies that the natural morphism

Txx, 0i* ol x(F.(M)) — Txx, 0i* oAy x (F.(Mmin))

induces an isomorphism on homology groups, wkerX, is special. Thus for each special
pointx € Xy and for each whole numbgx, we have a natural isomorphism

Tex, ©hp(i* 0By x(F.(M))) 2 Tyx, o hp (i* 0 Ay x (F.(Mmin))) -
Thus the lemma follows, since there is a special point in &yj-orbit onX, [13]. B
We can now conclude that the natural morphism
F(Xy.i 0 A x (F.(M))) = T (Xy,i* 0 Ay x (F.(Mmin )))

induces an isomorphism on the level of homology groups. Thus the proof of Theorem 4.3
follows immediately by an application of Proposition 2.2, Proposition 2.1 and Proposi-
tion4.2. A
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5. GEOMETRIC REALIZATION OF REPRESENTATIONS

In this section we consider the relation of the comparison theorem to the geometric
realization of representations. In particular, supppseY is a special point and l&t
be an irreducible polarize@|y]-module. Let.#(y,V) denote the corresponding gener-
alized standard Harish-Chandra sheaf define¢®h If A € h* is a parameter for the
[y-infinitesimal character iN then the sheaf cohomologies

HP(Y39 7(y,F)) p=0,1,2,...
are Harish-Chandra modules wigkinfinitesimal characte® =W - A. Put
M =T (Y29,.7(y,F))

and letMp,in denote the minimal globalization 8. We are interested in finding a geomet-
ric realization forMpin in Y. One obvious candidate is the analytic localizatioMgfi, to
Y. In fact, suppos@ € © and, using our previously established notation, let

Ay (F-(Mmin))

denote the analytic localization bfqi, to Y. It follows from the Beilinson-Bernstein result
that the sheaves, (Fp(Mmin)) p=0,1,2,... are acyclic for the functor of global sections
and that there is a natural isomorphism of complexes

M (Y, A4 (F.(Mmin)) = F.(Mnin).

Thus the complexd, (F.(Mmin)) has vanishing hypercohomology in all degrees except
zero, where we reobtain the modlk,in. Indeed, when the infinitesimal character
is regular, one obtains the following uniqueness for this geometric realizatidmpf Let
. be a complex of sheaves of DN& (2, ).-modules, with bounded homology, whose
hypercohomology realizes the modW&,in, then there are natural isomorphisms in ho-
mology
hp(Au(F(Mmin))) = hp(ﬂ)

for eachp. In the case of the full flag space, this uniqueness follows from an equivalence
of derived categories shown in [9]. The general case is not hard to deduce from this.

Thus we would like to understand the complgx(F.(Mmin)). It turns out that the struc-
ture of the analytic localization is completely determined by the corresponding geometric
fibers. In particular, we have the following result [4].

Proposition 5.1. Let W be a minimal globalization witfrinfinitesimal characte®©® and
choosel € ©. Suppose Y is a complex flag space fgr Gsing the previously established
notation, letA, (F.(W)) denote the analytic localization of W to Y. Choosey and let
S= Gp-y. Assume that each of the homology groups

ho(Ty 00, (F(W))) p=0,1,2,...

is finite-dimensional. Let?(y,hy(Tyo A, (F.(W)))) denote the sheaf of polarized sections
for the polarized homogeneous vector bundle on S determineg{Byotd\, (F.(W))). Then
there is a natural isomorphism

hp(8 (F(W)))[s= Z(y,hp(Ty o &y, (F.(W))))
of Gp-equivariant DNF sheaves gfmodules.
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Base Change.The previous proposition, in conjunction with the comparison theorem, can
be used to deduce information about the geometric realization for the minimal globalization
of a generalized standard Beilinson-Bernstein module. There is a third ingredient we will
also use: the so-called base change formula [4], as applied to the derived geometric fibers of
the Harish-Chandra sheaf(y,V). In particular, leD(.(22'9)) (respectivelyDP(U; (Iy))

denote the derived category of bounded complexes of quasi-cohar(@i"g)-modules
(respectively the derived category of bounded complexégmiodules with infinitesimal
characteil). Suppose € Y. Then, in a natural way, the geometric fibezatetermines a
derived functor

LT, : D°(x,(229) — DP(U, (Iy)).
Let Q be theK-orbit of y and letQ be the Zariski closure o in Y. PutdQ=Q—-Q
andU =Y — dQ. ThusU is Zariski open. Lef denote the codimension € in Y and
let V[qg] denote the complex af-modules which is zero except in homology degege
where one obtains the module We also identify the sheaf (y,V) with the complex in
DP(7.(Z3'9)) which is zero in all degrees except degree zero where we oBt&jnV ).
Then, at least for € U, the complex.T,(.# (y,V)) is simple to understand. We summarize
in the following proposition.

Proposition 5.2. Maintain the previously introduced notations. Then we have the follow-
ing isomorphisms in B(U, (Iy)).
@ ForzeU —-Q

LT,(#(y,V)) = 0.

(0) LTy(#(%,V)) = V[q].

Proof: The result follows from the construction of (y, F ) and the base change formula,
which holds for the generalized direct image, as in the case of the direct image for
modules [2].0

Forz e dQ, the structure the compldxT,(.#(y,V)) is more complicated, at least when
Q%9 s not affinely embedded 29. In particular, let
i1y, yal
denote the inclusion. We let,(Z:%)|,a0 be the sheaf of algebras (759) restricted to
Ua9and IetDb(n*(Qf'g) luaig) denote the derived category of bounded complexes of quasi-

coherenm*(gj'g)\Uaug—modules. Then the direct image in the category of sheaves induces

a derived functor
Ri, : DP(7.(229)|yas) — D°(m.(239)).
We have the following.
Proposition 5.3. Maintain the previously introduced notations.
(a) Suppose z dQ. Then
LTZO Ri*(f(y,V)‘Ualg) =0

in the category B(U, (Iy)).
(b) If Q%9 is affinely embedded in® then

Ri*(cﬂ(y,VMlJalg) = j(y,V)
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In particular
LT(7(y,V)) =0
forze dQ.

Proof: Once again, the first claim (a) is an application of the base change formula for
the generalized direct image, applied to the sh€g&y,V). On the other hand, the second
claim (b) is another standard result for the direct image functor [2], which also applies to
the direct image in the category of generalizeédnodules &

Geometric Realization for the Minimal Globalization of a Standard Module. Suppose
M =T (Y29, .7(y,V))

is a standard Harish-Chandra module, whegeY is special an is an irreducible polar-

ized Go[y]-module. LetZ(y,V) be the sheaf of polarized sections for the corresponding
Go homogeneous polarized vector bundle and g, denote the minimal globalization of

M. We are now ready to deduce the following result, which generalizes the result for the
full flag space.

Theorem 5.4. Maintain the previous assumptions and notations. Let Q denote the K-orbit
of the special pointy and let q denote the codimension of Q in Y. Assumgertfigitesimal
character in V is regular and antidominant for Y and kete h* be a corresponding pa-
rameter.

(a) Suppose S is theg@rbit of y. Then

hp (A, (F.(Mmin))) |s = { @(0 for p#£q

y,F) forp=q -

(b) Suppose S is affinely oriented. Then

o 0 (F (M) = {007

whereZ(y,F)Y denotes the extension by zera®{y,F)to Y.

Proof: SinceA is regular and antidominant i, it follows from the Beilnson-Bernstein
equivalence of categories that

al ~ 0 forp#0
i (AllQ(F(M))) _{ F(y,V) for p=0 "

Thus, forz € Y, the homologies of the compIeTgoAi'g(F.(M)) are isomorphic to the
homologies ofLT,(.#(y,V)). Via the comparison theorem, the homology group3.cf
Ai'g(F(M)) coincide with the homology groups of, o A, (F.(Mmin)) when these homol-

ogy groups are finite dimensional. Thus the first part of the theorem follows by an appli-
cation of Proposition 5.2 together with Proposition 5.1, and the second part follows easily
using Proposition 5.3

Theorem 5.5. Suppose ¥ Y is special and that the K-orbit? of y is affinely embed-
ded in Y9, Suppose V is an irreducible polarized[@-module. Let# (y,V) indicate the
corresponding standard Harish-Chandra sheaf g#¥and let #(y,V) denote the corre-
sponding sheaf of polarized sections on thedgbit S of y. Suppose q is the codimension
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of Q in Y. Then the compactly supported conomology grafi(8BH”(y,V)) vanishes for
p < g and for each n> 0, HI™"(S, 2(y,V)) is naturally isomorphic to the minimal glob-
alization of H'(Y, .7 (y,V)).

Proof: WhenV has anly-infinitesimal character that is regular and antidominant for
Y, then the corollary follows immediately from the previous theorem. The general case
follows by a tensoring argument, as in [4.

6. THE SU(n,1)-ACTION IN COMPLEX PROJECTIVE SPACE

In this section we give an example to analyze the situation wherGgherbit is not
affinely oriented. In particular, we show that Theorem 5.5 fails to hold. Put

n
J= Z Ejj — En+int1
=1

whereEj are the standard basis for te+ 1) x (n+ 1) matrices and supposeg is the
complex special linear groupL(n+ 1,C). Define

Y(A) = (A)L and 7(A) = Iy(A)J

for A€ G. Thust is a conjugation of5 andy is a compact conjugation commuting with
7. By definition, the fixed point set af is the group

Go = SU(n, 1).
The corresponding-invariant maximal compact subgroup @ is
Ko = SU(n+ 1) N Go.

The complexificatiorkK of Ky is naturally isomorphic to the fixed point set @ of the
involution

0(A) =JAJ
Thus the elements &€ are the matrices of the form
0
A :
0
0 - 0 (detn)™!

whereA € GL(n,C).
We calculate thé&-orbits on the complex flag spade= P"(C). For (z,...,Z1) €
C"1 et

Al
Znga
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denote the corresponding pointR?(C). LetU C P"(C) be theK-invariant affine open
set defined by, 1 # 0. ThusU contains twdK-orbits: one consisting of a fixed point

0
pr = 0
1
and the other being the op&nrorbit:
Qo =U - pr-
The complement df :
Q.=P"(C)-U

is a close-orbit of dimensiom—1.

Matsuki duality now determines th8g-orbits onY. In particular, letSpy, S and &
denote the dual orbits tQ,, Qo and Qc, respectively. Thus, and S are open orbits
while & is closed inY. Observe tha&, and& are affinely oriented whil&, is not when
n > 1. Using lwasawa decomposition f@p, one sees thd{y acts transitively org,. In
particular,S, € Qo and each point il%, is special.

Let &y denote the sheaf of holomorphic functionsYoand let&y |s, denote the restric-
tion of 0y to . We also introduce shedk, ., of regular functions on the algebraic variety
Yal9 and let

i: leg — Yalg
denote the inclusion. Choose a poyrt S, and letC denote trivial one-dimensional po-
larizedGply]-module. Then the corresponding she@fy, C) of polarized sections is the
Go-equivariant sheafy |s,and the corresponding Harish-Chandra shégy, C) is theK-
equivariant sheaf c;j-modulesi*(ﬁ’Ya|g|Qg|g) wherei, denotes the direct image in the cate-
gory of sheaves.

Letuy denote the nilradical of the parabolic subalgefyrand let

ly = py/uy
denote the corresponding Levi quotient. Then fhmfinitesimal character for the trivial
moduleC is parametrized by-p, wherep is one half the sum of the positive rootshh.
Since—p is regular and antidominant, it follows that

HP(Y,.#(y,C)) =0 forp>0 and ' (Y,.#(y,C)) #0.
By a direct calculation, it is not hard to show that the segfinite vectors in
M, O¥ls) =T(S, 2(y.C))
is naturally isomorphic to
I (Qo, Gyan| o) =T (Y,.7(%,C))

although we shall give a different reason for this below. On the other hand, since the
codimension ofQ, in Y is zero and sinc&, is compact, if the orbiQ, were affinely
imbedded, it would follow from the work in the last section of this paper that

HP(S, Z(y,C)) =0 for p> 0.
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We now show that this vanishing does not occur when1.

If .7 is a sheaf defined on a locally closed subseft oive let.#" denote the extension
by zero of.# to Y. To calculate the higher sheaf cohomologiegifs, we consider the
following short exact sequence @h-equivariant sheaves of

Y
0— (Gvlsus,) — O — (6yls)" —0.

We compute the resulting long exact sequence in sheaf cohomology. siand S, are
open orbits, a standard sheaf cohnomology argument shows that
Y Y
H p(Y7 (ﬁY|S:USp) ) = H(?(Sta ﬁsc) ® H(?(SF” ﬁsm)

where 0g, and 05, denote the sheaves of holomorphic functionsSrand &, respec-
tively. Since the codimension @} is one and the codimension Q¥ is n it follows from
Theorem 5.5 that

HY(S,0s) =0forp#1 and HP(Sp, O5,) =0 forp#n
Indeed, via Kashiwara’s equivalence of categories for the direct image functor [7] one
deduces thatil(S;, 0s,) andHY(Sp, Os,) are irreducible minimal globalizations. In par-
ticular, each of these last two cohomologies are nonzero. On the other hand, it is well
known that sheaf cohomology fa@ry vanishes in positive degree. Thus, for- 1, we
obtain the short exact sequence
0— C -l (S, 2(y,C)) — HY(S, O5) — 0.
For positivep, it follows thatHP(S,, Z(y,C)) is zero except whep = n, in which case
we obtain the isomorphism:
H" (S, 2(y,C)) = HY(Sp, O5;,)

which contradicts Theorem 5.5.
We continue our analysis using the ideas developed in our study. Put

M=T(Y,#(y,C))

and letMp, denote the minimal globalization ™. We calculate the analytic localization
of Mnmin to'Y and use this information to deduce that

Mmin = I’(S @(y,(C)).
Let
AfP(F-(Mmin))
denote the corresponding analytic localizatiorivigfi, to Y. By the comparison theorem,
for ze Y special, the morphism of complexes

T296 A% (F.(M)) — T,0 8- (F.(Mmin))

induces an isomorphism of homology groups, provided the left hand side has finite-dimen-
sional homology.
Therefore we are interested in calculating the homologies of

LT:(7(y.C))
forze Y — Qo. PutU = Qo UQfp. ThusU is a Zariski open set isomorphic @7. Let

j: QA9 — U9 and k: U9 — Y39
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denote the inclusions. Singg(.7 (y,C)|yas) = #(y,C) and sinceJ is an affine open set
it follows from the base change that

LT,(#(y,C)) =0 forzeY —U.
On the other hand
F (¥, C)yais = j«(Oyaig| qaia)-
Thus if {z} = Qs andn > 1 then
LT(7(y,C)) =C
since
j*(ﬁya|g|Qg|g) & Oyaig|alg-

Therefore
N 0 ifp#0
hp(A_p (F.(Mmin))) :{ (Gylsus,)" if p=0"
p

where(ﬁ’y|gousfp)Y denotes the extension by zeroYoof the restriction of the sheaf of

holomorphic functions t&, U Sp. In particular,(6"Y|53U5,p)Y is the unique sheaf of DNF
modules for the sheaf of holomorphic differential operator¥ avhose sheaf cohomology
vanishes in positive degrees and whose global sectionsVigid

SinceZ(y,C) = 0y|s,, we have the following short exact sequence:

0— (&¥ls,)" = (¥lsus,) — 2(3,C) —0.
Taking global sections we obtaMmin = T'(S, Z(y,C)).
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