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TOTAL CENTRAL CURVATURE OF CURVES IN THE 3-DIMENSIONAL
LORENTZIAN SPACE

GRACIELA MARIA DESIDERI

ABSTRACT. Total central curvature of closed curves in Euclidean spaces has been stud-
ied by Thomas F. Banchoff, see Duke Math. Journal, 1969. In some papers, it has been
related to Riemannian spaces, but this curvature has not been treated on spaces with indef-
inite metrics. In this work we generalize, by means of integral formulas, the total central
curvature from Euclidean spaces with dimension 2 and 3 to Lorentzian spaces with dimen-
sion 2 and 3, respectively.

1. INTRODUCTION

In some papers, the total central curvature is related to Riemannian spaces; but this
curvature has not been treated on spaces with indefinites metrics.

In [1], Thomas F. Banchoff stated that the total central curvature of a closed curve in
3-dimensional Euclidean space refers to the measure of curvedness of a space curve con-
tained in a bounded ball. He obtained this curvature by averaging the total absolute cur-
vature of the image curves under central projection from all points on the sphere, and he
showed that the total central curvature agrees with the classical total absolute curvature of
the original space.

In this work, we generalize, by means of integral formulas, the total central curvature
from Euclidean spaces with dimension 2 and 3 to Lorentzian spaces with dimension 2 and
3, respectively.

In 2-dimensional Euclidean space, the total central curvature of a closed twith
respect to the unit circl&', tcc, (;S') , is given by

1
te, (f;SY) = 27r/5€le‘)§ (f)dss

whereY: (f) denotes the number of local support linesf tpassing through the poidt

One of the problems that arise when we want to generalize this curvature to 2-dimen-
sional Lorentzian space is the fact tI%thas not finite length. For that reason we define
the central curvature of a closed curve with respect to a connected arq(S;) , with
finite length cc, (f,C;), by

1
(1.0 = gt e, (119%
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40 GRACIELA MARIA DESIDERI

and the total central curvaturtec, (), is defined by

tce(f)= lim co(f,Cj),
Ci—(S1),

if this limit exists; we say thaticc, (f) = o if this limit does not exist.

We will show that iff is a¢? simple closed curve, thewc, (f) depends on the number
of its local support lightlike lines.

In 3-dimensional Lorentzian space, we consider the central projectionmnapthe
definition of central curvature of a closed cug/@ith respect to a connected regisnc S
with finite areaccs (g9,S;), as follows

1

cx3(9.S) = area(s,)

/ (o]0) (ﬂpoigog,SjﬂL%) dSsj,
peS;
WhereL% denotes a plane parallel T (S7) which contains the origin of coordinates, and
iz {xeL3: (x,x) >1} — L3—T,(S}) is the inclusion map.

The total central curvaturégcs (g), is defined by

teez(9) = lim ces(9,S)),
S—%

if this limit exists; we say thaticcs (g) = o if this limit does not exist.

In section 2, Preliminaries, we will recall the basic notions in Lorentzian geometry.

2. PRELIMINARIES

In then-dimensional vector spa®’, n € {2; 3}, we denote the Euclidean inner product
and the Euclidean norm with) and||.||, respectively.

In what follows,n € {2;3}.

Let x andy be two vectors in the-dimensional vector spade”. As it is well known
([2, B]), theLorentzian inner producdf x andy is defined by

n
XYL = —Xay1+ Y Xi.
L iZZ 1 Y1
Thus the squards’ of an element of arc-length is given by
n
dg = —dxX + § d¥.

The spaceR" equipped with this metric is called mdimensional Lorentzian spacer
Lorentzn-space. We write." or RY, [5], instead of(R", ds).

We say that a vectorin L" is timelikeif (x,x), < 0, spacelikdf (x,x), > 0, andnull if
(x,x),. = 0. The null vectors are also said to lightlike.

We say thak is orthogonalto y if (x,y), =0, x#y# 0.

Let x be a vector irL", then||x||, = 1/[(X,X)_| is called theLorentzian nornof x. We
say thai is aunit vectorif ||x||, =1, that s, if (x,x), =1 or(x,x), = —1.

We shall give a surfac# in L3 by expressing its coordinates as functions of two
parameters in a certain interval. We consider the functions be real functions of real
variables.
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TOTAL CENTRAL CURVATURE OF CURVES IN 3-DIMENSIONAL LORENTZ SPACE 41

We say thatM is a non-lightlike surfacef at every p € M its tangent pland,M is
equipped with a positive definite or Lorentzian metric, [2].

A parametrized curve is called timelike, spacelike or null curve if at every point, its
tangent vector is timelike, spacelike or null, respectively.

We say that the curv& (O,r) = {X : <5>(,C3)<>L = rz} is a Lorentzian circlewith
centerO and radiug, whereO is a point in the Lorentzian plane amds a positive real
number. We remark th& (O,r) has two branches and each of them is a timelike curve.
Hence, the Lorentzian circle is a timelike curve.

Inwhat follows, we will denotes’ ((0,0) , 1) with S}, and(Sy) , = {(x1,X2) € S} : x2 > 0}.

We now recall a well know definition, [1].

Definition 1. Let f: S' — R? be a continuous map of the circlé $to the Euclidean
plane. Alocal support lindo f at x is a line containing x and bounding a closed half-plane
which contains the image of a neighborhood of xin S

In the definition of local support line, we consideilas a continuous map of the circle
St into L2 when we are working in the Lorentzian plane.
We denote the number of local support lined tpassing through the poigte L? with

Ye (F).
3. TOTAL CENTRAL CURVATURE OF PLANE CURVES

In [1], we find the definition of the curvature of a closed plane curve with respect to a
circle in Euclidean plane.

Definition 2. Let f: S' — R? be a continuous map of the circlé $to the Euclidean
plane. Thecurvature off with respect to a circl€ is defined by

1
whereYe () and dg denote the number of local support lines to f passing through the
point&, and the element of arc of C so that - dsc = length(C) , respectively.

That means that the curvaturec; (f;C) is defined as the average value\ef(f) for
pointsé € C.

Example 3. We show three examples where=fidentity and C is a circle with centre
O=(0,0) and radiusr.
i) IfO<r <1 thenYg (f) =2 Hence, tcg(f;C) =2
i) Ifr =1, thenY; (f) = 1. Hence, tcg(f;C) = 1.
i) Ifr > 1, thenYg (f) = 0. Hence, tcg(f;C) =0.
If fisaconvex closed curve afs a circle with cente© and radiug, thentcc, (f;C)
—2if H&H <1, X e f (S (cf. [1]).
One of the problems that arise when we want to generalize Definition 2 from the Eu-
clidean plane to the Lorentzian plane is the fact that the Lorenzian circle does not have

finite length. For that reason, we will define first the curvature of a continousfréth
respect to a connected ¢ C (S}), which has finite length.
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In what follows, we consider a continuous mép St — L2 of the circleS! into the
Lorentzian plane such th&t(S") N (S}), = 0.

Definition 4. Let G C (S) , be a connected arc such thak length(Cj) < «. Thecentral
curvature off with respect tcC; is given by

1
— Ye (f) dsg,
Iength(Cj)/r;Ecj ¢ (1) ds;,

whereY: (f) denotes the number of local support lines to f passing through the §pint
and_fgecj dsg; = length(C)).

ce(f;Cy) =

Remark 5. Since f is a closed curv () #0VE € (S}), . Also, Y (f) # o because
Egf(sh.

Now we define the total central curvature fof
Definition 6. Let (Cj)jZl a sequence of connected arcs such that:

) Cic(s),,vi>1
i) CjCCjyr,Vj=> 1

i) length(C;) < e, ¥j > 1, and lim SCier
| —o0 ]
iv) imCj=(g}), .
J~>oo

Thetotal central curvaturef f is defined by

1

if this limit exists; we say that te¢ f) = o if this limit does not exist.

length(Cj.1)

The existence of a sequen(®) )
by the following Theorem.

j>1 fulfilling the above mentioned conditions is shown

Theorem 7. In L2 there exists a sequence of connected &3, such that:

) Cjc(S),,vi>1
i) CjCCjy1, Vj>1

J*)OO

Proof. Let {a{, b’l} be a sequence of pairs of real numbers such that:
>1

a)bj+1<bj <aj<a™vj>1

al b 1
b) Im Jlil = I|m le =3.
c) lim a = +oo and limb! = —c.
] —0 ] —0

We calllag = {I" (B)NI~(A): AB€L?}, wherel " (B) andl~ (A) are the chrono-
logical future ofB and the chronological past & respectively; in particulat,” (B) and
I~ (A) are open sets in the Alexandrov topologyLéf cf. [2] and [6].
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LetA| = (a’l, 1+ (al) ) andB; = (b‘p 1+ (b}) >-HenceAj7 Bj € (1), and

|AJ-B,~ C IAj+1Bj+l7 Vi>1.
Hence, if we callCj = Ia;g, N (S})+ then(Cj),., is a sequence of connected arcs with
properties i)-iv). O

Note thatCj = {(x{,xé) e(sh), bl <x < a‘l}

Lemma 8. Let (Cj)jZl be a sequence of connected arcs as given in Theorem(@.);lf |

is a subsequence (Ltj)j21 with properties i)-iv), then

limce (f;Cj) = limeep (1,G).
J—>oo | —o00

Proof. Since the properties i)-iv) hold fcéC,-)iZland(Ci)iZl, and(Gi);», C (Cj)j21, then:
Vi > 13j1;,]j2 > 1 such tha.lei cG cC Cj2i andvj>1 Hilj,izj > 1 such thaCilj C
Cj C Cizj .
Hence,jﬂgncz(f;cj) = ilmccz(f;Q). O

Theorem 9. Let (Cj),., and (Cg) - be two sequences of connected arcs as given in
Theorem 7, thetim cc, (f;Cj) = }!im cc, (f;C;,) .

| —o — 00
Proof. By properties i)-iv)vh > 1 3jy,, j2, > 1 such thaCj, < G, CCj, and (leh) E
(Cjzh)h>l C (CJ-)jZl with properties i)-iv). Hence, we have that

Wﬁgeq Ye (f)dSCjzh <

_%e(h) AU
< fée(Cjzh 7c’h) Iengtr(cﬁl)ds(cjzh *C|/1> +f1§eC{1 length(C;,) d%h <
A VD) e
= fge(CjZ 7C;1) length(Cll )ds(cjzh 7C;1) * féeC,g |engﬂ(cl)dsc <
_ e _ e
f5€<C12 C11h> Iength(cJ1 )dS(Cjzh —Cijy, ) fﬁeCJl Iength(C ) Sleh.
By Lemma 8, we obtain

limce (f;Cj) <
] —00

< lim —1 ) (e - )Yg(f)ds(%hC,h)+limCC2<f;C;])S

h—olength le
< lim —12 Ye (f)ds limce (f;C
- hﬁoolength(cjlh) f§€<cjz *leh) e(1) (Clzh *Cth) * joeo 2(1iCp).

On the other hand,

lim fée@]z ) Y: (f)ds(cj2h )" constant=

= Amm f&(Cth 7leh) Ye () dS(Cj2h 7leh> =0.
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Then,
Aimccz(f;c;) < limce (F;C)). )
— 00 J~>00
H > ) ) > / . / / /
Analogouslyyj > 13hy;,hy; > 1 such thaChlj cCjc Chzj and (Chlj ) 51 (Chzj ) o1 C

(Ch> hot with properties i)-iv). Hence,

lim cez (;C)) < lim ez (£;G5,) @)

j—oo

By (1) and (2), we have that
limee (f,Cj) = rI]im ce (f,Ch).

J~>oo

0
Theorem 10. Let f be a&? simple closed curveccording to Definition 6, we have that
2<te(f) < g,

wheren denotes the number of lightlike lines which are tangent to f and passing through
some point of S}) . .
The equality holds if f is a convex simple closed curve.

Proof. Let f be a¢’? map By [3] we know thatn > 4 becauséd has at least four lightlike
points.

By [6], we know thatn < o becausef is a closed curve and it has a finite number of
folds.

Denoteu : x; = %o andv : x; = —x, which are two lightlike lines irL? passing through
the point(0,0).

Letuy,...,u, be lightlike lines such that; is local support line td andu; is parallel to
u, and letvy, ..., v be lightlike lines such that is local support line td andv; is parallel
tov. DenoteU; = vjnuandVj = ujNv.

We denote the number of poiritg and the number of pointg with n, andny, respec-
tively.

LetU; = (x,%,) andV; = (y{,yé) ,and letA= (a,a2) € (S}), such that
ap= max {\x‘l

j
1<i<h, 1<j<t yl‘}
and letB = (—a;,az2) . We denote the arc betweérandB with AB.

Since the lightlike linesl andv are asymptotic lines ((fS})+ , andu; andv; are parallel
to u andy, respectively, thels (f) <h+t, V& € (S}), —AB.

Let (Cj)jzl be a sequence of arcs as given in Definition 6. Without loss of generality,
we considelC; as simetric arcé\;B;; that meansC; = A;O+ OB; andlength(C;) =2
length(A;O), whereO = (0,0).

There existgg such that for every > jo, ABC Cj. Then

)

1 J—
tengit(c; Jzec; Ye (F) dse; =
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- m (féeABYé (f)ds;, +f§e(C,——AB) Ye (f)ds(cj—AB)) ~

Since

1 : .
length(C;) fge(c,- _aB) Ve (f) dSc;_ag) =
= Ye(f) d ) Ye(f) q
~ Jee(Aj0-h0) 2length(A;0) S(AJO—AO) ¢e(0B;—0B) 2length(A;0) S(OB,-—OB)’
then

1 _
length(C;) féeCi Y§ (f) d‘ccj -
_ 1 length(AjO—AO)
~ lengthC)) fgeABYé (f)dscj +(Mu+nv) W-
Hence,
2<tc(f)= }mmkeq Ye (f) dgg; < WTHV — %
If fisconvexthen, by [3ln =4. Hencetco () =2. O

Corollary 11. Let f; and % be two%? simple closed curves such that(8') N (S})+ =

f2(S')N(Sp), = 0. If fyand % differ from a translation, then teq f1) = tcey (f2) .
Proof. The numbers), andn, are invariants under translations. O

Note that, in this case, we cannot refer to the rotations bechuaed f, are not two
pure curves.

4. TOTAL CENTRAL CURVATURE OF CURVES IN THELORENTZ 3-SPACE

In Thomas F. Banchoff’s words, the total central curvature is related to the measure of
curvedness of a space closed curve contained in the ball (bounded by an Euclidean sphere)
obtained by averaging the total absolute curvatures of the image curves under central pro-
jection from all points on the sphere, [1] .

In 3-dimensional Lorentzian space, we find similar problems to the 2-dimensional case:
S is not a compact surface and its area is not finite either.

Analogous to section 3, we will define first the curvature of a continous gnafh
respect to a connected regiSpc Sf which has finite area.

In what follows, we consider a one-to-one continuous magt — L of the circleSt
into the Lorentzian 3-space such tia), > 1vxe g(St).

In [4], we studied some projection maps in Lorentzian 3-space.

Definition 12. Let T, () be the tangent plane to¢%t p e S and let 3 be the plane
parallel to T, (S}) through the center of&SThecentral projection mapy : L3 — Ty (Sf) —
L3 is given by
1
Tp(X) = ———— (X— (X, p); P).
p( ) 1_<X7p>|_( < >L )

This projection map is a one-to-one and onto map (cf. [4] for more details). Note that
7y restricted toS — Ty (Sf) gives the stereographic projection.

Let us remark thait2 is congruent to the plarie?.
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46 GRACIELA MARIA DESIDERI

Definition 13. Let § C S be a connected region such that af&p) < «. Thecentral
curvature ofg with respect td5; is defined by

cc3 (9, Sj) = co (ﬂfpoigog, (Sij%)+) dss;,

1
W(Sj) /PESJ'
where [g dss = area(S)), is: {x € L®: (x, ), > 1} — L%~ Ty (S}) is the inclusion map,
andz, : L3 — Ty (S}) — L3 is the central projection map.

In Theorem 19 we will show some properties(& NL3) ,
Remark 14. According to Definition 4, the curvature of g with respect josgiven by
Ye (mpoizo
c(9.5) = /pesj /ge(sjmg,)+ area(Sjg) (Ie;gt\:w(sgj)m L2), Asnp), s
We now define the total central curvaturegof
Definition 15. Let(S;);

j>1
) S§jCSLVj>1
i) S C S v >l
iii) area(S;j) <, Vj > 1, and I|m aea(a(sgi) —1
)
iv) Vpe S, 3jp > Lsuch that(SJ NLy), #0,¥j > jp.

v) limS =S
] —0

be a sequence of connected regions such that:

Thetotal central curvaturef g is defined by:
tces(g) = limees (0.5)),
j—o0
if this limit exists; we say that tg¢g) = o if this limit does not exist.

The existence of a sequen(®})
by the following Theorem.

j>1 fulfilling the above mentioned conditions is shown

Theorem 16. In L3 there exists a sequenc§);. ; of connected regions such that:
) SCcSLvj>1
i) §CSjy1,Vj>1

s
iii) area(Sj) <o, Vj>1, and |moa;‘::(a(g;) -1
iv) ¥pe S}, 3jp > 1suchthat(SnLy), #0,Vj> jp.

v) lims; =<,
] —0

Proof. There exists a sequence of pairs of suitable real nun{n{r,sb{}_ . such that:
. . . . 1z
a)bl™ <bl<al <al™ vj>1
al b!
b) lim ;= Ilmgﬁ1 = 3.
1

4)00

c) | I|m al =+ and limb! = —o.

j—o0
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Then (Sj)jzl
{(dH) eg:bl<xd <al}. O
Lemma 17. Let (Sj)j>1 be a sequence of connected regions as given in Theorem 16. If
(S)i>1 is a subsequence ()Sj)j>l with properties i)-v), then

limces(g;Sj) = limees (9 S).-
J—>°° |—00

is a sequence of connected regions with properties i)-v), wBgee

Proof. This proof is analogous to the proof of Lemma 8. O
Theorem 18. Let (Sj)jZl and (31) - be two sequences of connected regions as given in
Theorem 16, thefim ccs (g; §;) = lim ccs (g; 31) :
Proof. This proof is analogous to the proof of Theorem 9. O

We now study the arctSj NLg) ,

Theorem 19. Let pe S and Iet(Sj)jzl be a sequence of connected regions as given
in Theorem 16. If there exist, > 1 and ((Shp N Lf,)Jr) C ((Sj N L%)Jr)_ _ such

i>ip
length(Shy1ML3 ) ( 2 )
that I|m Sh S and hl'ﬂm—lengtr(sﬂpmu) 1, then ( (S, NL3) i is a sequence

of connected arcs of a branof§{NL3), of the Lorentzian circlgS;NL%) in L§ with
properties i)-iv) of Theorem 7.

hp>jp

Proof. Let p be a fixed point oiSf and Iet(Sj)j>1 be a sequence of connected regions
as given in Theorem 16. There exigis> 1 such thatp € Sj, Vi > jp, and there exists

) 2 ms length(Shy:arLp)
((qu N LP)+>hijp C ((SJ N Lp)+) . such thathpl_lmsqp =S/ and p'_r}jo length(SyL3)
— 1.

HenceYhy > jp, (S, NL3), is a connected arc. Also:

i) Sinces; S then($,NL3), € (SSNL), , Vhp > jp. |

ii) SinceS;j C Sj;1, then($h,NL3), C (Sh+1NLP),  Vhp > jp.
iii) Sincearea(S;) < w, thenlength(S; N L%)Jr <00,V > 1. In particular,

length(Sh, NL3), <, Vhy> jp.
Let us recall tha{S;NL3) , is a timelike curve i3 and
(§NL3) = {(x{,x&,xg) eSnL2:b) <xl < a{}

if S = {(xl,xz,x3> e:bl<x < ai}
iv) Slncehplir;losr1p =g andSh:an% (S,NLF), = (SINLF),, then
i (,71L9), = (S04 0
We show the main theorem L.
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Theorem 20. Let(Sj); ; be a sequence of connected regions as given in Theorem 16 such
thatVp € & there exist j > 1and ($,) C (Sj);»1 as given in Theorem 19. Then we
have that

hp=jp

1
im_ L .
tces(g) = Jmarea@) /pesjtccz(npmgog)dss

Proof. Let y, = mpoizogandtcc (g) = limcez (9, S)).
] —0
According to definitions 6, 13 and 15 we have that:

jli—rgoare;-(Sj)/pgsj [tccz(yp) ccz(yp, (SinLp) )}

— i 1 2
I ) e 0 C0) e (i (509 ) o
1 . )
= jlmm(sj) /pesj tLanw [ccz (yp, —CC ( SJ N L +)} dss.
By Theorems 16 and 19, we may assume (Gqf), _; ((Sh N L2)+)h _ - Then,
p=lp

. 1 o
ey N SR CART)

- }mml(sj)/p lim [ccz (yp, (qumL%)J —CG (yp, (S OL%)J} dss .

ESJ hp~>00

Hence, by Lemma 8,

jlmwlsj) prSj [tCCz (Yp) —CC2 ('}'p7 (Sj N L%)+>] dss =0. ]
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