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1. INTRODUCTION

Representations of finite groups over the field of complex numbers is one of the most
studied subjects in finite group theory. It has many applications to different areas of math-
ematics. It has also important applications to physics and chemistry. Given a finite group
G we can construct the group algel®a= kG over the field of complex numbers. By well
known theorems of Maschke and Wedderburn, the algalisathe direct sum of matrix
algebras over the field. For instance, ifG = Dg is the dihedral group of order 6, the
decomposition of the algebrais as follows:

kG~ k@ ke Mz (K).
If the groupG is the quaternion group of order(®g) then the decomposition is
kG~ ke kd ke ke Ma(k).

The direct summands in such decompositions correspond to the irreducible representations
of the groupG. Both examples have irreducible representations of dimension 2. Let us
analyze these (two) representations in more detail. If the dihedral group is givenr=by

De = (0,7:0° = 1% = € 0T = 10?) the irreducible representation of dimension 2 is given

by
O +—— _11
1 0)’

10)

For the quaternion grouQg = (6,7 : 6% = e,72 = 62,07 = 76°) the representation of
dimension 2 is given by
i 0
o= (0 3)

~10)

It should be noted that in the dihedral case all the entries in the matrices are real whereas
in the quaternion case some of the entries are complex numbers. Of course, it is possible
to change the map (following a base change) in the dihedral case in such a way that some
of the entries will be complex and not real but it is impossible to change the base of the
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132 ELI ALJADEFF

2-dimensional vector spaé@ in such a way that the matrices of the 2-dimensional repre-
sentation of the quaternion group will have only real entries. We say that the two dimen-
sional representation @g cannot be realized over the real numbers. Another way to see
this phenomenon is by taking the group algeBi@. Again, this algebra is semisimple

and it decomposes into simple components. One of the components is the quaternion al-
gebra of dimension 4 over the real numbers (and not the algebra @& @atrices over

the reals). Extending the scalars to the complex humbers (i.e. tensoring with the field of
complex numbers over the reals) we “recover” the algebra-of 2natrices over the com-

plex numbers. We would like to view the quaternion algebra of dimension 4 over the reals
as an obstruction to the realization of the 2-dimensional irreducible representation of the
quaternion group over the real numbers. If we tensor by the complex numbers we split the
quaternion algebra and hence we split the obstruction.

An important question in the theory of representations of finite groups is over what
fields one can realize the representations of a given g&upnother question which is
intimately related to that question is what are the possible obstructions or more precisely,
what are the division algebras that appear in the Wedderburn decomposition of a group
algebrakG for a given groupG and given fieldk. An easier question (but still highly non
trivial) is if we fix the field k what are all the division algebras that can appear in such
decompaosition when we run over all finite groups. In this series of lectures | would like to
consider that question and also the analogous question for projective representations (with
PGL, (k) instead ofGLy(k)). But before we consider these problems we should study some
basics in the theory of division algebras, cohomology and Brauer groups.

2. GROUP EXTENSIONS ANDH?(G,A)
Let ' be a group (not necessarily finited,an abelian, normal subgroup, and &t=
I"/A. We have a short exact sequence of groups
1—A—T —G— 1.

Such a sequence defines an actioain A. This is defined as follows: for each e G
choosean elementi; € I with 7(us) = o and consider the automorphismAuf

Ne:A — A
a — ugaul.
SinceA is abelian one checks that the mgyp is well defined, namely is independent of
the choice of the element; € I'. So we have defined a map
n:G — Aut(A)
c — 1.

and it is easy to check thatis a group homomorphism.
Since the elements,; are representatives of the cosetdAdh I', every element it is
written uniquely agus, a € A, o € G. The product of two such elements is given by

(auy) (bu;) = auybuytusu; = ane (b)usus.

Since the elemenisu, is mapped ont@ t by 7, there exists an element & denoted by
f(o,7), such that
UsUr = (0, T)Usr.
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THE BRAUER GROUP AND THE PROJECTIVE SCHUR SUBGROUP OF AFIELD 133

Furthermore, if we abuse notation and writéb) = n(b) for the action ofe on b we
obtain

(aug)(bu;) =ac(b)f(o,T)us:.
The associativity of” forces a condition on the functioh: G x G — A, namely the
“2-cocycle” condition. Indeed the equality

(Ucur)uv — UG(UTUV)
implies the equality
f(ot,v)f(o,7) = f(o,7v)f(7,V)°,

wheref(t,v)° stands foro (f(7,v)). We call such a function “2-cocycle”.
The set of 2-cocycle$ : G x G — Alis a group with the pointwise multiplication, that
is, fg(o,7) = f(0,7)9(0, 7). The identity isf = 1 € A. The group is denoted [&?(G, A).
Conversely: Fix a grouf and an abelian grouf. Fix an action ofG onA (i.e. a map
G — Aut(A)). A 2-cocyclef : G x G — Adefines an extension of groups

1—A—T —G—1,

where the elements éf are of the formaus,a € A, us a symbol, one for each elememt
of G. The multiplication inl" is defined by

(au) (bus) = ac(b) (6, )t

It is easy to show that the extension obtained “gives back” the acti@afA. Now
put an equivalence relation on the extension& afy A. Let

1 A M G 1
A
1 A M G 1

be two extensions. We say that they are equivalent if there is a homomorphism (hence an
isomorphism, check!)’ 1 — ', making the two squares commutative. Denote the set of
equivalence classes IB(G,A). We have defined a map

¢ :Z%(G,A) — E(G,A).

Now on the seE(G,A) one can define a natural group structure which makes thegmap
a group homomorphism. Furthermore by our discusgigmsurjective ontd (G, A). The
kernel of¢ (check!) consists of the 2-cocyclds G x G — A for which there exists a
1-parameter familf A } s in A such that

f(0,7) = As0(A)A;~ foreveryo,t e G.

Suchf is called a coboundary and we denoteger B*(G, A).

Thus we obtain Z%(G,A)/B?(G,A) ~ E(G,A). We denote the quotient
Z%(G,A)/B?(G,A) = H?(G,A) and call it the second cohomology group ®fwith co-
efficients inA. (Note thatA is aG-module.)

Remarks: 1) the trivial 2-cocycle yields the semidirect prodlict G x A.

2) A trivial action of G on A is equivalent to the extension-4- A —TI —G—1
being centralA— Z(I)).
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134 ELI ALJADEFF

3. OTHER COHOMOLOGY GROUPS

Given a grougG and aG-moduleA (written multiplicatively) we definé1?(G, A) = A®,
the G invariant elements iA.

H(G,A) = ZY(G,A)/B}(G,A) whereZ'(G,A) = f : G — A: f(o71) = f(0)o(f(1)).
Suchf is called 1-cocycle or crossed homomorphism.

BY(G,A)=f:G— A:Jac Awith f(c) = o(a)al, for everyo € G.

In generalH"(G,A) is defined as follows (for this description we ehave an additive
structure).

ConsiderZ as a trivialG module(ga=a, Vg€ G, ac Z). Let

—-Ph-P1—-—-P—-R—-Z—-0

be a projective resolution d& over ZG. DeleteZ from this exact sequence and to the
deleted complex apply the contravariant fundtor Homy,g(—,A). We get

d d
0 — Homyg(Py, A) = Homyg (P, A) = Homyg (P, A)
— - — Homyg (Pr, A) 2 Homyg (Pry 1, A) —

This is a complex, usually nonexact (sirfegs not exact). We “define”

Kerdy
IMdny1

H"(G,A) =

One shows that up to isomorphism, the gréiiifG, A) does not depend on the resolution.
To check that this definition coincides with the definition of the low dimension cohomology
groups, one uses the standard resolution in its non-homogeneous form, also cabiad the
resolution

Explicitly, let F,, n> 1 be the freeZG module with a basis{[glygzy...\gn] 1gi € G},
and forn = 0, we letFy ~ ZG, i.e., the free module with a unique basis element denoted
by [ ]. The differentialsd : Fy — F,_1 are defined in terms of th& basis|g|...|gn] by
0= § (—1)'d;, whered; is theZG-homomorphism given by

01[92]---|on) i=0
di[g1]...1gn] =  [01].--1Gi-1]GiGi+2| ... |on] O<i<n
[0l |gn-1] i=n.

Let us check for example that it yields the above constructidh?G, A). We write the
resolution

S REREZRAREZ O
deleteZ and apply the functoF = Homyg(—,A) (say, A with additive structure). We
obtain
0 — Homyg(Fo, A) — Homyg(F1,A) = Homyg (2, A) = Homyg(Fs, A)

Kerod
Imoj -

H?(G,A) =
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THE BRAUER GROUP AND THE PROJECTIVE SCHUR SUBGROUP OF AFIELD 135

Take f € Homyg(F,, A) and required; f =0, i.e., on the basis df,
(d5f)[o|zlv] =0 or f(ds[c|z|v])=0

for everyo, ,v € G. This means that

f(ii(—l)idi [omv]) - f(omv] —[oT|V]+[o]Tv] - [am) —0.

Sincef is aZG linear map (denotind ([x|x]) by f (x,*)), we get
f(ot,v)+f(o,7) = f(o,7v)+ f(1,Vv)°.

If A has a multiplicative structure we get the required form.
The d-coboundaries are computed similarly.

4. COHOMOLOGY OF CYCLIC GROUPS
For our discussion on Brauer groups it is convenient to compute the cohomology groups
of cyclic groups (finite).
Let G be a finite cyclic group of order generated by (G = (o)). Instead of using the

standard resolution, in this case, one can use a much simpler resolution which is periodic,
namely,

2625726526 L7165 2 -0,
where the mapZ andoc — 1 are given by

:2G — ZG
z — (1+o+0%+--+0o" )z
(6-1):ZG — ZG
z — (0-1)z
One checks that this sequence is exact. Apply Hefn,A) to the deleted complex and
get

0— Homye(ZG, A) “—1 Homy(ZG, A) = Homya(ZG, A)
O, Homye(ZG,A) —
In order to computéi?(G, A) we have to compute
Kerc—1)* A® AC

Imz 7 ImZ ((1+o+02++om )X

It follows that an element ibl?(G, A) is represented by a single elemenafh This simple
fact will be important for some future discussions.

Explicitly, if f:Gx G — Alis a 2-cocycle G cyclic) then the class = [f] may be
represented by a 2-cocycle of the form

g(o',0)) = {aeA I=n (= ordG)
1 I+]<n
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136 ELI ALJADEFF

The element € AC is obtained in terms of the given 2-cocydeby (A with the multi-
plicative structure)

a=f(0,0)f(c,06%)f(c,06%)...f(c,6™1).

(Here we are assuming thitl,¢') = f(c',1) = 1.)

5. RESTRICTION, INFLATION, CORESTRICTION

We will discuss briefly some maps in cohomology.
Let G be a group anti a subgroup. Given &-moduleA, one has a map

res :H"(G,A) — H"(H,A),

which can be realized in terms of thecocycles arising from the bar resolution. More pre-
cisely, if f : Gx G x --- x G— Alis ann-cocycle representing an element H" (G, A),
then resx is the element itd"(H, A) represented by the restriction bfoH x H x - -- x H.

A different way to realize the restriction map is the following:

Let—P,— P,_1—--- —Z — 0 be a projective resolution @ as a trivialZG-module.
SinceZG is free ovelZH (coset representatives form a basis), projective moduleszsser
are projective agZH modules and hence the above complex is also a projective resolu-
tion of Z as a trivialZH module. In order to computd"(G,A) andH"(H,A), we apply
the functordg = Homg(—,A) andFy = Homg (—, A) to the deleted complexes respec-
tively. We get

0 — Homyg(Fo,A) — Homgg(F1,A) — - -+ — Homyg(Fy, A) —
0 — Homzy (Fo, A) — Homygy (Fp,A) — -+ — Homgy (R, A) —
The restriction mapi"(G,A) — H"(H,A) is the map in cohomology induced by the “iden-
tity” map
Homyg (Fn, A) — Homgzy (Fn, A).

The inflation map is well understood by meansnetocycles arising from the bar reso-
lution. LetN be a normal subgroup i® andG/N the quotient. LetA be aG-module
(ZG-module), and leAN be theN-invariants inA. ThenAN is aG/N module. The in-
flation map inf :H"(G/N,AV) — H"(G,A) is given by in{g) (61,...,0n) = 9(01,...,0n),
whereo denotes the coset i@/N represented by € G.

Finally, we wish to define the corestriction map. I&be a group andé a subgroup of
finite index (sayn). Let us define

H'(H,A) — H'(G,A).

In dimension zero the definition goes as follows: Pick a set of representatives for the left
cosetsoH in G. G/H = {s1,...,S}.

cor:H'H,A) =A" — A°=HOG,A

a — Z s(a)
seG/H

Sinceais H invariant, the definition does not depend on the set of representatives.
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THE BRAUER GROUP AND THE PROJECTIVE SCHUR SUBGROUP OF AFIELD 137

The extension of this map to higher dimension cohomology groups can be done by
general theory. Let us give here a more down-to-earth approach, namely, using resolutions
of Z as a trivialZG andZH module. Let

- Ph—=Pp1—- >R —-Z—-0

be a projective resolution & as a trivialZG module. As above, consider this resolution
overZH, applyFg andFy to the deleted complexes and get

0 —— Honmygzy (Py,A) —— Honmygy (P1,A) Homzy (P, A)
I | "]
0 —— Homzg(Py,A) —— Homyg(P1,A) Homyg(Pn, A)
The map
Ttn - Homygy (P, A) — Homyg (P, A)
is defined by
T fr— Y sf(sTi-)
seG/H
or (mf)(x)= 3 sf(sx).
seG/H

In order to show that this map induces a map in cohomology, one shows that the squares
that appear in the diagram above are commutative, i.e., the{mgdpis a map of com-
plexes.

Proposition 5.1. Let G be a group, H a subgroup of finite indéG : H) = n, A a G-
module. Then the composition of the maps

res cor

H'(G,A) — H'(H,A) — H'(G,A)

corores=n (multiplication by n). In particular, if G is finite of order n then (takeH{1})
n annihilates H(G,A).

Proof. Consider the diagranP( is a projective resolution df overZG)

0 —— Homgzy (Py,A) —— Honmyy (P, A) Homzy (Py, A)
I
0 —— Homyg(Py,A) —— Homyg(Pi,A) Homyg (P, A)

Start withf € Homyg(Py, A). reg f) is the “same” function viewed as &ftlinear function.
Since it isG-linear,sfs ! = f andm,(reqf)) = nf. O
6. CROSSED PRODUCT ALGEBRAS

Let K be a commutative ring with unit element 1. L@®tbe a finite group, and denote
by KG = {Z XsUs : X5 € K, Us a symbol, one for each elemeamtc G} the group algebra
where the multiplication is defined s Us)(Y:Ur) = X5YrUsz-

Now assume thab acts orK via a homomorphism

t: G — Aut(K).
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138 ELI ALJADEFF

On the “same” left fre&K-moduleKG we introduce a new multiplication using the action
(as in semidirect product)

(XUg) (YUr) = X0 (Y)Uo

wherec(y) =t(o)(y). Now extend this multiplication by the distributive law. We obtain
an associative ring and denote it KyG.

Now we can introduce another perturbation on the multiplication. SBaets orK, the
invertible element&* in K form a (multiplicative)G module (i.e.ro € ZG acts onx by
ro(x) = o(x)") and therefore one can consider the second cohomology ¢é(®, K*)
of G with coefficients in theG moduleK*. As explained in Section 2, an elemeamte
H2(G,K*) is represented by a 2-cocyde G x G — K*.

On the same underlying frd&module a¥;G (or KG) we define a new multiplication
so that it satisfies the rule

(XUs) (YUr) = X0 (y) f (0, T)Use.

We denote this ring by(th. The associativity follows from the 2-cocycle condition sat-
isfied by f. It is easy to check that, up to a ring isomorphism, this construction does not
depend on the representatifebut only on the cohomology clasé] = a € H2(G,K*).

This explains the notation

KEG.

This ring is called the crossed productiowith G.

If o is trivial (i.e., represented bfy= 1) we recoveK;G, the skew group ring ok with
G.

If the action ofG on K is trivial one writesK*G and calls it the twisted group ring &f
with G.

It is time for some examples.

Let K/k be a finite Galois extension of fields a@= Gal(K/k) be the Galois group.
Then we can form the skew group algebra (trivial 2-cocyBlg} (the action orK is the
Galois action). LetK : k) = n. Then the dimension df;G as aK vector space ia and as
ak-vector space is?.

The next proposition shows thi{G is a simple algebra. More generally we show

Proposition 6.1. Let K be a field and G a group (not necessarily finite) acting on K faith-
fully (i.e.,kert = {1} where t: G — Aut(K)). Leta € H?(G,K*) and f: G x G — K* be
a 2-cocycle representing. Then the crossed producfiG is simple.

Proof. We have to show th&t*G has no non-trivial 2-sided ideals. Let O be an ideal
in KZG (2-sided) and lez = X1Ug, + XoUg, + - - - + X U, be an element ih of minimum
length. Ifr = 1, thenz= xyug, is invertible and = K*G.

So assume that> 2. Multiplying by ugll we can assume that

Z=X1Ue+ XoUg, + X3Ug, + - - + X% Ug, (€identity inG).
Now, since the action db onK is faithful, there existy € K with 62(y) #y. We claim that
the elemento = yz— zyhas length that is shorter than the lengttz,cdnd also G4 w € I.
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This is a contradiction to the minimality af Indeed,
O = yXiUe + YXUq, + YX3Ug; + - - + YX Ug,
— (XaUey + XoUg,Y + - - + X Ug,Y)
=X2(Y — 02(Y)) Us, + X3 (U — O3(Y)) Us; + -+ + X (Y = 6r (Y) ) Ugy

Sincey — o2(y) # 0, the claim is proved.
So, the skew group algebkaG, whereG = Gal(K /k), is simple artinian of dimension
n? overk = K. We claim that
KtG ~ Mn(k),
whereMp(K) is the algebra of alh x n matrices with entries ik. This is proved as follows.
ConsideV = K, then-dimensional vector space overWe define a map

n:KG — Endk(K) (~Mpuk))
XU Ty, Txus (Y) = X0 (Y).

One checks thaty is a homomorphism of rings. Sind&G is simple,n is a monomor-
phism, and since the two algebras have the same dimensiok,ayés an isomorphism.
Consider the particular cagk /k) = (C/R), G=C, = {1,0}. By the preceding para-
graph,C;C; ~ My(R) (o(z) = zthe complex conjugation). Now we introduce a 2-cocycle.
By the discussion on cohomology of cyclic groups, we need to consider 2-cocycles of the
form
f(1,1) =f(0,1)=f(1,0)=1, f(o,0)=acR".

Two 2-cocyclesf, g are equivalent if they differ by a coboundary. Here, it simply says that
if g(o,0) =band 1=9g(1,1) =g(1,0) = g(o,1) thenf ~ gif and only if

ab ! =zo(z) forsome ze C.

In other words,a = zzb= |z°b. This means thaf ~ g if and only if ab~! > 0. So,
in H?(C,,C*) there are two elements, one represented by the trivial codyetel and
another one represented by the cocyle 1) = g(1,0) = 9(o,1) =1, butg(c,0) = —1.

So let us check what iI€7C,. It is a simple algebra 4-dimensional ov@r We claim
that CfC, ~ H is the quaternion algebra of dimension 4 oRerThis is a division algebra
with centerR.

H = {Rl@Ri@Rj ORk:  2=(2=K=-1
ij = k= —ji

The isomorphisnC{C, — H is given by
(a+ib) = (a+ib)jue — a+ib
Us +— .
As noted in the examples, the center of the algéiff&, whereG = Gal(K/k) anda €
H?(G,K*), isk = K®. This is true in general.
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To see this, note that after an easy manipulation with 2-cocycles one can get a normal-
ized representative, namely a 2-cocy€leith

f(eo)=f(o,e)=1 forevery c€G.

This simply says that we may consideras the identity element iNth. Having done so,
we see immediately that the elemerig, x € k are in the center d{*G.
Let us show thaku is exactly the center. Take

P = X1Ug, +XoUg, + - - + X Ug, € Z(KZG)

and assume that the coefficieqbf someo; # eis not zero. For suchy; there existy € K
such thatoi(y) # y. So on the one hanghy = yp. On the other hand, the coefficients of
Ug, in pyandyparex;ci(y) andxy, respectively. This is impossible sinag, form a basis
overK.

7. BRAUER GROUPS

Fix a fieldk. Consider the set (k) of all finite dimensional, central simple algebras
overk. By the Wedderburn theorem, such an algebia isomorphic to the algebra of all
n x n matricesMp(D) with entries in a division algebr® and somen. The center oD
is k, andD is finite dimensional ovek (the center oMy(D) is the scalar matricels: ).
FurthermoreD is determined uniquely (and hengup to an isomorphism dé-algebras.

The preceding remark on the uniquenes®aodllows us to introduce an equivalence
relation on the set df-central simple algebras, namelyB € .# (k), A ~ Biiff the division
algebraDa andDg determined by the Wedderburn theorem laisomorphic:

<A::Mm(DAL B~ M, (Dg) then DA::DB>

The set of equivalence classes is denoted k)Br

An important reason for introducing this equivalence relation is the following: We wish
to define an algebraic structure on the set of division algebras, centrak.ovée tensor
product overk of two k-central (simple) finite dimensional division algebragk-isentral
simple but not necessarily a division algebra; in other words, the set of division algebras is
not closed undery. For exampleH ®g H ~ Ma(R).

The quotient set BKk) is in 1-1 correspondence with the set of finite-dimensional
k-central division algebras. Furthermore, we define a multiplication ¢k)Bnaking Br(k)
an abelian group: Explicitly, fofA], [B] € Br(k) (two classes represented ByandB), we
let

[Al[B] = [A®kB].

There are several things to check.

1. If AandB arek-central simple algebras (let us agree that the word “algebra” already
implies finite dimensional) theA®y B is ak-central simple algebra and herjéexy
B] € Br(k).

2. This multiplication is well defined. Let; ~ Ay, By ~ B,. Write

A1 ~M,(D)  By~M(D)

Ao ~M,(D)  Bo~Ms, (D)
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ThenA; @B ~ My,s, (D@ D) andA; @Bz ~ My,s,(D @k D), and ifD @, D ~ M, (D)
then
A1 @B = My,5t(D), Ao @k Bz = My, (D),
so the algebras are equivalent.
3. The tensor product up to an isomorphisnkeflgebras is associative and commuta-

tive.
4. The identity element is representedlogr, in general, by, (k). Clearly, [K][A] =
kekAl = [A].

5. Given a clas$A] € Br(k), its inverse is given by an elemeji#] with [A][B] = [K]. In
other words, we need an algelBauch that

A®kB~Mjy(k) somen.

Hence, we wish to fin@ such thatA @ B ~ End(V) (n= dimyV).

So, we are looking for an algebBasuch thatA ®x B acts on a vector spasé.
Such algebra is given b§°P. As ak-vector spacé@’P ~ A but the multiplication is
reverseddxb = ba).

The algebraA @y A°P acts onA by x® y(z) = xzy. This gives a map

¢ AxkA°P — End(A).
If dimyg A = r?, then dimA® A°P = n?, and also dirgEnd,(A) = n®. Finally, since

A®A°P is central simpleg is an isomorphism.
Thus we obtain that BK) is an abelian group.

8. SOME BASIC EXAMPLES

1. Ifk=Kkis algebraically closed, then B¢ = 0. This follows from the fact that there
are no nontrivialk-central simple division algebras ovier= k. Note that the fieldC is
embedded in the quaternion algeBfa~ CZC, but is not central!

Proof. If D is ak central division algebra, letc D\ k. Sincek is central, the algebra
generated biandzin D is commutative and therefore a field (take all inverses that already
existinD). Sincek = k we have(k,z) =k, thatis,z€ k. O

2. If k is a finite field then Bfk) = 0. If D is k-central simple ovek thenD is finite
dimensional over a finite field and hence a finite algebra.

A theorem of Wedderburn states that there are no noncommutative finite division alge-
bras. So Bfk) = 0.

3. If k=R it is known that theR central division algebras ai, H. So, B(R) = Z.
The generator if] andH @ H ~ M4(R), i.e., [H][H] = 1 = [R].
9. THE COHOMOLOGICAL DESCRIPTION

LetK /k be amn-dimensional Galois extension of fields. &t Gal(K /k) be the Galois
group. We can define a map (called restriction)

res:Bik) — Br(K)
A — [AekK].
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Ais k-central simple and sA®y K hask®y K ~ K in its center. It is not difficult to prove
thatk @ K is exactly the center oA @y K, and thereforéA @y K] defines an element in
Br(K).
Furthermore, the map res is a homomorphism of groups. This follows from the isomor-

phism

(A®kB) @kK ~ (A®kK) @k (BkK).
Let us denote the kernel of res by

Br(K/k).

It consists of classes in Bt) such tha{A®y K] = [K], i.e.,

A®kK ~ M (K) (r=dimgA check)

We say that &-central simple algebra is split B¢ if A@xK ~ M;(K). So, BI(K/k) is
the subgroup that consists of all elements that are represented by algebras that are split by
K.

We have an exact sequence

0 — Br(K/k) — Br(k) = Br(K).

We wish to describe the subgroup(Br/k) (called theK /k relative Brauer group) but
before that, we exhibit some results concerning splitting fields and some consequences.
If A~ M;(D) is ak-central simple algebrd) a k-central division algebra, it is easy to

see that a field splitsA if and only if it splitsD. This follows immediately from

A®kK ~ Mr(D) ®kK ~ M,—(k)®kD®kK ~ M,—(D@kK).

So if K splits M, (D), thenM, (D) @i K ~ Mys(K) and by the uniqueness in Wedderburn’s
theoremD @k K >~ Ms(K). The converse is clear.

Let D bek-central simple and le ~ k, the algebraic closure & Since there are no
nontrivial division algebras ové€, we have

D @k K ~ M, (K).
Computing dimensions we see that
dimgD = dimg D @K =r2.

In other words, the dimension of a division algebra over its center is always a square. The
positive square roatis called the index ob denoted by inD).

In order to find a finite dimensional splitting field f@, take a maximal fielK in
D. Such a field is characterized by being equal to its centralizér (ne., Cp(K) = K).
Moreover, it is not difficult to show that its dimension oveis n = /dimyD.

The claim is that a maximal field iD splitsD. In order to show that, we show that
D®kK ~ End (D) ~ M;(K). Here we viewD as a right linear space ovkr Consider the
endomorphisms

D, = {La|ae D, L, X — ax for xe D}

Kr:{Ru\ueK, R, : X~ xu for xeD}.
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D, andK; are in EndD) and they commute there. Thus we have a homomorphism

¢0:DekK — End(D) ofrings
au — LaRy.

SinceD ®kK is simple, this is an isomorphism (possibly not surjective). But the image of
¢ in End D) commutes with the action & ~ K and therefore

¢ : D& K — Endk (D).

A computation of the dimensions of these algebras as vector spacds siiews that they
are equal. Hence is an isomorphism onto ER@D) ~ M, (K).

The extensiorK /k may not be Galois but, if chéar= 0, certainlyK /k is separable and
we can takd. O K D k, the Galois closureL /k is a finite extension and spli3. This
follows from the simple but important fact thatkf/k splitsD, then every extensioh of
K also splitsD. Indeed,

D®kL ~D®kK®kL~M (K)®kL=>~M;(L).

So in characteristic zero we have found a finite Galois splitting field for every division
algebraD. In characteristip > 0 it is not difficult to show the existence of a finite separable
extension ofk that splitsD. For many years it was not known whether every division
algebracontainsa maximal field which is Galois. This was shown to be false by Amitsur
in 1972 using generic constructions.

As mentioned above, we wish to describe the relative Brauer gro(g /Ry via co-
homology and, more precisely, to represent the elements(id /B) by crossed products
algebras. Since every element in(Bris split by a finite Galois extension, we will con-
clude that every element in Bq) may be represented by a crossed product algebra.

So letK /k be a finite Galois extension of dimensinandG = Gal(K /k) be the Galois
group. We consider the skew group algekif& (t denotes the Galois action).

We have shown thak;G ~ My(k) which “is” the identity element in Bk) (or in
Br(K/k)). For everya € H?(G,K*) construct the crossed product algekf4G. We know
that this is &-central simple algebra of dimensiof overk. We claim thaK splitsK*G
(note thatK*G is not necessarily a division algebra). The argument here is the same as
the one used for division algebras. Note that the field Kue is a maximal field irK®G.
Indeed, an element outsi#i@l, must have a non-trivial componexi,;, o # eandu, does
not commute withK. To end the proof, we use the fact that the; } form a basis oK*G
overK. Thus we have defined a map

n:H*G,K*) — Br(K/k) c Br(k)
a — [K*G|.

The main claim here is that this map is an isomorphism of groups. To show tisah
homomorphism, one shows that

KEG ok KP G ~ KPP G ey K G.
SinceK;G ~ M, (k), this implies
Kealkf el = [k a).

Actas del VIII Congreso Dr. Antonio A. R. Monteiro, 2005



144 ELI ALJADEFF

Since the algebraic closure kfcontains splitting fields for all elements in @) one can
show (taking limits) that
HZ(Gkvkz) = Br(k)7
whereGy is the absolute Galois group of the fiddéndk; is the separable closure kf
The cohomological description has many applications as we shall see. First we show
that Br(k) is a torsion group (i.e., every element is of finite order). Indeed, consider the
composition

H2(G,K*) = H2({e},K*) =5 H?(G,K").
We have shown that cores= n but here cosres= 0 sinceH?({e},K*) = 0, son = |G|
annihilates every element k?(G,K*). The order ofx € Br(k) is denoted by exx).

10. THE SCHUR AND PROJECTIVESCHUR SUBGROUPS OF THBBRAUER GROUP

Let k be a field of characteristic zero, ahdbe a finite group.kN denotes the group
algebra. By Maschke’s theorem it is semisimple Artinian. Then we can write the following
(using the Wedderburn theorem):

The fieldk ~ kue is embedded in the center of each simple component, i.e., we have
kC ki =2z(My,(Di)) ~ z(Dj).

Consider only the simple components withk- z(M, (D)). These components akecentral
simple algebras and therefore determine elements(ik) Br

Definition 10.1. A k-central simple algebr@ ~ M, (D) is called a Schur algebra oveiff
B is the homomorphic image of a group algekhafor some finite grougN.

As mentioned above, such algebras determine elements(k) &nd we consider the
subgroup of Bfk) generated by elements in @) that are represented by Schur algebras.
We denote this subgroup (k) and call it the Schur group & We claim thatS(k) is not
only generated but rather consists of classes represented by Schur algebras. This follows
from the fact that ifA andB are Schur algebras ovkiand if they are assumed to appear in
the decomposition dféN; andkN, respectively, thed @y B is a homomorphic image (i.e.,
appears in the decomposition)ldfh x N».

Remarkl0.2 The statement above &k) holds also in positive characteristic. For- 0,
kN is not necessarily semisimple. There one defines a Schur algebrk avek-central
simple algebra which is a homomorphic image of a group algkeldra

Sometimes it is good to have an “internal” definition.

Proposition 10.3. A k-central simple algebra B is a Schur algebra over k if and only if
B*, the group of units in B, contains a finite subgrdupwhich spans B over k. We write
B =k(I"). (Warning: Do not confuse(K) with the group algebrak. The notation k")
simply says that(f') is spanned over k by the elementd$ of

The proof is very easy. IB is a Schur algebra ovég it is the homomorphic image of
kN (some finite groufN). Let ¢ : KN — B be the projection ont8. Theng(N) C B*is a
finite group, and since is k-linear andN spanskN overk, we see thaf = ¢(N) spansB
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overk. For the converse, B is k-central simple and is spanned by a finite gréug B*,
thenB = k(I") is the homomorphic image of the group algekirain the obvious way.
For example, consider the algebra of quaternions Bver

H={R1oRi®Rj®Rk}.

We takel” = {+1,+i,+j,+k}, which is a quaternion group of order 8. Cleaflyspans
H overR, but it is certainly not a basis. There is a surjective map

R — H
us —— S where se {£1,+i,+],+k}.

Although the characterization of Schur algebras given above has some advantages, still it
does not give an “explicit” way to construct them. Let us exhibit here such a construction
(called cyclotomic algebra). Lét = k(&) be a finite cyclotomic extensior (is ann-th

root of unity). Then, clearly, the fiell is spanned ovek by the finite group({). Let

G = Gal(K/k) and form the skew group algebigG. To form a crossed product, we must
twist the multiplication by a 2-cocyclé : G x G — K*. Instead of taking an arbitrary
2-cocycle we take a cocycle with values in the finite grédp i.e.,

f:GxG— ({) CK"™.

The crossed product algebkgG, a = [f], is called a cyclotomic algebra. By general
theory, we know thak{*G is ak-central simple algebra. We wish to show thKtG is a
Schur algebra, i.e., spanned okddy a finite group of units. Indeed, let

1— () —Ir—G—1

be the extension of groups defined by the Galois actid® oh K (and hence or¢)) and
by the given 2-cocycld : Gx G — ({). Since({) andG are finite, the extension is also
finite and we claim that it span§”G overk. Sincel” contains({), it spansK. Further,
the elementsi;, o € Gin I' spanK®G overK proving the claim. We view cyclotomic
algebras as a “natural” construction of Schur algebras.

Theorem 10.4(Brauer—Witt) Every element in the Schur group of k is represented by a
cyclotomic algebra. (In other words, every Schur algebra is equivalent to a cyclotomic
algebra.)

The Schur group of a field has been computed in some cases. For fields of positive
characteristi§(k) = 0. Here is the idea of the proof:
If k(I') ~ M, (D) is a Schur algebrd, is finite, one shows th&(I") is of the form

whereko(I") is ko-central simple algebra, and is a finite extension of the prime field in
k. Consequentlyky is finite and we know that Bky) = 0. Soko(I") is a matrix algebra
M (ko), and thereford(I") ~ M; (k).

For a local field S(k) is rather small. It turns out to be finite (cyclic) whergBr~ Q/Z.

We wish now to study the projective analog of the Schur group. The gdgpis related
to representations exactly &Sk), the projective Schur group, is related to projective
representations of finite groups. Liedl be a group algebra as above. let H2(N,k*),
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k* a trivial N module, and lef : N x N — k* be a 2-cocycle representimg We can form
the twisted group algebikN (recall the multiplicatiorxusyu, = xyf(o, 7)ugs¢).

Let us explain how “projectivity” comes into the game. It is well known that a repre-
sentation of the groupl over the fieldk is ak-vector spac& with a homomorphism of
groups

N — GLk(V).
This is equivalent to saying th&t is akN module. A projective representation Mfis a
vector spac®’ overk and a map (not necessarily homomorphism)

¢ :N— GL(V)
such that its composition - ¢ with the natural homomorphism
v:GL(V) — PGL(V) ~ GL(V)/K*

is a homomorphism of groups. It is not difficult to see that this is equivalent to saying that
V is a module over a twisted group algebfaN, o € H2(N,k*).
Let us builda € H2(N, k*) for a given projective representation

n:N— PGLV).

For everyo € N, choose a representativg € GL(V) of n(o) € PGL(V). Sincen(o)n(t)
=n(o7) in PGL(V), the elementsi;u; andu, differ by an element irk*:

UGUT — 1:((77 T)UGT‘

It is easily checked that : N x N — k* is a 2-cocycle and that is ak*N module where

o = [f]. Having a twisted group algebk&N we wish to define projective Schur algebras
and the projective Schur group. This generalization was introduced by Lorenz and Opolka
in 1976. As we shall see, the construction is much richer and many “natural” classes
in Br(k) belong to the projective Schur group. Here are the definitions and some basic
statements:

The twisted group algebi&N is semisimple (we are assuming that ¢k&r= 0, and by
Maschke’s theorenk®N is semisimple) and so it decomposes into a direct sum of simple
algebras. Again,

k*N ~ M, (D1) ®M,(D2) & - - - & M, (Ds).
(Note that the trivial representatidis not necessarily a module ove€tN. In fact,k is a
k*N module if and only ife = 0 in H?(N,k*).)

Again we choose the simple algebidgs(D) (in such decomposition) with centkr In
generalk is contained irk; = Z(My,(Dj)). Thus we define a projective Schur algebra over
k to be ak-central simple algebra which appears in the decomposition of a twisted group
algebrak*N for some finite groupN and somex € H2(N, k*).

The projective Schur group d&fis the subgroup of Bk) generated by (and again con-
sisting of) the element in Bk) that may be represented by projective Schur algebras. We
denote this subgroup BBSk). We clearly have

Sk) ¢ PSk) C Br(k).

As Schur algebras, also projective Schur algebras have an “internal” characterization. We
claim that ak-central simple algebr8 is a projective Schur algebra if and only if it is
spanned ovek by a group” C B* that isfinite modulo k.
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Let us show this. Ik*N, consider the group of “trivial” units. It consists of the mono-

mial elements
K“*N = {xus € K*N}.

This is a subgroup ofk*N)* and clearly it spank*N overk (in fact, even over).

Now if B is a homomorphic image &*N (i.e., appears in the decompositionk§N
into simples) undep : k*N — M, (D), the imagd™ = ¢(k**N) C B* spansB overk, and
I is finite modulok* (becausd**N is finite modulok*). Conversely, iB ~ k(I"), wherel
is finite modulok*, we consider the central extension

1—kK —TI—Tl/kK'~H—1

(H finite). This extension determines an elemg@rih H?(H,k*) and one checks th&is
the homomorphic image & H under the obvious map

k“H — B
U +—— Ug.

The projective Schur group of a fieldis much bigger than the Schur group. We will
show that in two important cases it coincides with the full Brauer groupklbet a num-
ber field that is a finite extension @ (rationals). It follows from class field theory that
everyk-central simple algebra is split by a cyclic extensioaf k which is contained in a
cyclotomic extension ok (L/k is cyclic if it is Galois, and G4L /k) is cyclic).

So we havk C L C F, F =Kk(&), whereé is anr-th root of unity. LetS= Gal(F /k),

G = Gal(L/k). Take[B] € Br(k). We are to show thdB| € PSk). Suppose first that the
algebraB has a splitting field. that is a cyclic cyclotomic extension kfrather than cyclic
contained in a cyclotomic extensiénof k). From Section 9 we know th#B| € Br(L/k)
and so[B] is represented by a crossed produtG, G = Gal(L/k), a € H*(G,L*). Lisa
cyclotomic extension df, so spanned by a finite extension okeBy assumptionG = (o)

is cyclic, so we can find a representative

P ack’ i+j>ordG)
f(o',0))=
(c’,07) {1 i+ j <ordG).

Sincef has value irk* it defines an extension
1—kK—IN—G—1

which is clearly finite moduld*. Furthermore, the groupis contained irLG and spans
LG overL. So the group generated byand({) is finite modulok* (" normalizes({))
and span&*G overk. So we have found a spanning grdupverk such thafl" /k*| < .
This shows thafL#G| € PSKk).

Now drop the assumption thhtis cyclotomic ( is cyclic contained irF, F /K is cyclo-
tomic). Our algebr#® is split byL and, sincd= D L, is split also byF.

SoBis similar to a crossed producf G, G cyclic. Thus we can choose a representative
f of a with values ink*. So the groug defined byo € H?(G, k*),

1—kK—IN—-G—1
is finite modulok* and span&*G overL. We cannotsay as before thdt is spanned over
k by a group that is finite modulk".
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By the Galois theoryG = Gal(L/k) is a quotient group o8 = Gal(F /k), S/H ~ G,
whereH = Gal(F /L).

Recall the inflation map in cohomology

inf: H2(S/H,(F)") — HA(SF*)
inf: HA(G,L*) — H?*(SF")
a — inf(a)

and if a is represented by, we represent irffx) by inf(g), where infg)(o, 1) = g(o, 1)
with ¢, 7 in G. In particular, infa) may be represented by a 2-cocycle which obtains
exactly the same values as a chosen representative®fs cyclic, so choose a 2-cocycle

g representingx with values ink*. Represent irfix) by the corresponding 2-cocycle, i.e.,
also with values irk*. Form the crossed product

I:tinf(oz)s

Since the values of a representing 2-cocycle ake=iF S andF is a cyclotomic extension,
itis clear that{ ;"™ “'S] € PS(k). It remains to show that

We define a map

n:R"S — My(K) @k LEG ~ My(LEG)
~ Endguc((L¥G)Y),

whereq = ord(Gal(F /L)).

To this end, define an action Bfnf(“)Son F ®L L¥G. (Note thatF @ L#G ~ (L¥G)
as a right.¥G module.) Foxus € Fti”f(“)Sands® o € F® LFG we definexus (s® o) =
X0 (S) ® Usw. This action commutes with the right actionldfG and therefore defines a
map ofk-algebra

n: RS Endgg((LEG)Y).

SinceFt'”f(“)S is simple and the dimensions coincidg,must be an isomorphism. This
completes the prod?Sk) = Br(k) for number fields.

Number fields (finite extensions @) contain only a finite number of roots of unity.
We would like to show now that i contains “enough” roots of unity, then ag&&k) =
Br(k).

Theorem 10.5.1f k is a field that contains all roots of unity, then &%= Br(k).

Examplel0.6 The fieldC contains all roots of unity bu€ is algebraically closed and
therefore B(C) = PSC) =0.

The Brauer group of(x) (rational function field on one indeterminate) is also trivial.
But for k = C(x1,X2,...,X%), N> 2, Br(k) # 0, and by the theorem, Bt) = PSk).

In order to explain this result, we need some preparation.
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11. SrMBOL ALGEBRAS

Let k be a field and assume that it contains a primitivéa root of unity @. For given
elements, b € k we define the symbol algebfa,b) (or (a,b),) as follows. Itis generated
overk by x,y subject to the relations

X"=a, y'=b, yx= wxy.

It is clear that the elemenl{séy‘}i’fj;lo span(a,b), overk and, in fact, form a base ov&r
By a shortest length argument one can show thai),, is k-central simple.

The theory of symbols is of great importance in Brauer groups. On the one hand, their
structure is well understood, and on the other hand, they may be regarded as the “building
block” of the theory of Brauer groups. More precisely, Merkurjev and Suslin proved a very
deep theorem which says:

Theorem 11.1. Assume that k contains a primitive n-th root of unity. Then every element
in Br(k) of exponent dividing n is (Brauer) similar to the tensor product (over k) of symbol
algebras.

In other words, if “enough” roots of unity are presenkithe symbol algebras generate
the Brauer group. More precisely (using this terminologyy,if the n-th roots of unity,
are contained ik, then Brk),, the subgroup of BK) which consists of classes annihilated
by n, is generated by symbols. Recall tha{lBris a torsion group, so if all roots of unity
are contained ik, then B(k) is generated by symbols (or rather by classes represented by
symbols).

But now, from the structure of symbols, it is easy to see that a symbol algebra is a
projective Schur algebra. Indeed, it is spanned by the group of units generatehbtly
and moduldk* is isomorphic tdZ, x Zn (X" =ack*, y"=b e k*, yx= wxy, o € k*).

We conclude that ik contains all roots of unity, theRS k) = Br(k).

If k containsuy, thenPSK), = Br(k),. Thus we see in two different examples that
PSk) = Br(k). It was conjectured by Nelis and Van Oystaeyen #&tk) = Br(k) for
arbitrary fields. The purpose of this last part is to disprove this conjecture by analyzing the
Brauer group of rational function fields on the one hand, and on the other hand by analyzing
the structure of projective Schur algebras. It was shown by Aljadeff & Sonn (see ([AS1])
that every projective Schur algebra has an abelian splitting field, i.e., given a projective
Schur algebr# = k(I") overk, there exists a field extensighwith G = Gal(K /k) abelian
such thaK splitsA (K @A~ M, (K)).

However, this result is not sufficient to show tiREk) # Br(k) because it is a long
standing open problem whether every element itkBhas an abelian splitting field. A
year later this result was strengthened (by Aljadeff & Sonn) to the

Theorem 11.2. ([AS2]) Every element in R®) has an abelian splitting field which is
contained in a radical extension of k. [k is radical if L is obtained from k by adding
roots of elements of k, £ k(z1,2,...,7%), ;-”‘ =g €Kk*.)

This stronger result implies th&®Sk) # Br(k). This follows from the third
Theorem 11.3(Aljadeff & Sonn). ([AS2]) If k is a number field and (k) denotes the
rational function field in one indeterminate, thBn(k(x)) contains elements which are not
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split by any abelian extension, that is contained in a radical extension of k. In particular,
PSk(x)) # Br(k(x)).
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