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1. INTRODUCTION

Representations of finite groups over the field of complex numbers is one of the most
studied subjects in finite group theory. It has many applications to different areas of math-
ematics. It has also important applications to physics and chemistry. Given a finite group
G we can construct the group algebraA = kG over the field of complex numbers. By well
known theorems of Maschke and Wedderburn, the algebraA is the direct sum of matrix
algebras over the fieldk. For instance, ifG = D6 is the dihedral group of order 6, the
decomposition of the algebraA is as follows:

kG' k⊕k⊕M2(k).

If the groupG is the quaternion group of order 8(Q8) then the decomposition is

kG' k⊕k⊕k⊕k⊕M2(k).

The direct summands in such decompositions correspond to the irreducible representations
of the groupG. Both examples have irreducible representations of dimension 2. Let us
analyze these (two) representations in more detail. If the dihedral group is given byG =
D6 = 〈σ ,τ : σ3 = τ2 = e,στ = τσ2〉 the irreducible representation of dimension 2 is given
by

σ 7−→
(
−1 1
−1 0

)
,

τ 7−→
(

0 1
1 0

)
.

For the quaternion groupQ8 = 〈σ ,τ : σ4 = e,τ2 = σ2,στ = τσ3〉 the representation of
dimension 2 is given by

σ 7−→
(

i 0
0 −i

)
,

τ 7−→
(

0 1
−1 0

)
.

It should be noted that in the dihedral case all the entries in the matrices are real whereas
in the quaternion case some of the entries are complex numbers. Of course, it is possible
to change the map (following a base change) in the dihedral case in such a way that some
of the entries will be complex and not real but it is impossible to change the base of the
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2-dimensional vector spacek2 in such a way that the matrices of the 2-dimensional repre-
sentation of the quaternion group will have only real entries. We say that the two dimen-
sional representation ofQ8 cannot be realized over the real numbers. Another way to see
this phenomenon is by taking the group algebraRQ8. Again, this algebra is semisimple
and it decomposes into simple components. One of the components is the quaternion al-
gebra of dimension 4 over the real numbers (and not the algebra of 2× 2 matrices over
the reals). Extending the scalars to the complex numbers (i.e. tensoring with the field of
complex numbers over the reals) we “recover” the algebra of 2×2 matrices over the com-
plex numbers. We would like to view the quaternion algebra of dimension 4 over the reals
as an obstruction to the realization of the 2-dimensional irreducible representation of the
quaternion group over the real numbers. If we tensor by the complex numbers we split the
quaternion algebra and hence we split the obstruction.

An important question in the theory of representations of finite groups is over what
fields one can realize the representations of a given groupG. Another question which is
intimately related to that question is what are the possible obstructions or more precisely,
what are the division algebras that appear in the Wedderburn decomposition of a group
algebrakG for a given groupG and given fieldk. An easier question (but still highly non
trivial) is if we fix the field k what are all the division algebras that can appear in such
decomposition when we run over all finite groups. In this series of lectures I would like to
consider that question and also the analogous question for projective representations (with
PGLn(k) instead ofGLn(k)). But before we consider these problems we should study some
basics in the theory of division algebras, cohomology and Brauer groups.

2. GROUP EXTENSIONS ANDH2(G,A)

Let Γ be a group (not necessarily finite),A an abelian, normal subgroup, and letG =
Γ/A. We have a short exact sequence of groups

1−→ A−→ Γ−→G−→ 1.

Such a sequence defines an action ofG on A. This is defined as follows: for eachσ ∈ G
choosean elementuσ ∈ Γ with π(uσ ) = σ and consider the automorphism ofA:

ησ : A −→ A

a 7−→ uσ au−1
σ .

SinceA is abelian one checks that the mapησ is well defined, namely is independent of
the choice of the elementuσ ∈ Γ. So we have defined a map

η : G −→ Aut(A)
σ 7−→ ησ .

and it is easy to check thatη is a group homomorphism.
Since the elementsuσ are representatives of the cosets ofA in Γ, every element inΓ is

written uniquely asauσ , a∈ A, σ ∈G. The product of two such elements is given by

(auσ )(buτ) = auσ bu−1
σ uσ uτ = aησ (b)uσ uτ .

Since the elementuσ uτ is mapped ontoστ by π, there exists an element inA, denoted by
f (σ ,τ), such that

uσ uτ = f (σ ,τ)uστ .
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Furthermore, if we abuse notation and writeσ(b) = ησ (b) for the action ofσ on b we
obtain

(auσ )(buτ) = aσ(b) f (σ ,τ)uστ .

The associativity ofΓ forces a condition on the functionf : G×G −→ A, namely the
“2-cocycle” condition. Indeed the equality

(uσ uτ)uν = uσ (uτuν)

implies the equality
f (στ,ν) f (σ ,τ) = f (σ ,τν) f (τ,ν)σ ,

where f (τ,ν)σ stands forσ( f (τ,ν)). We call such a function “2-cocycle”.
The set of 2-cocyclesf : G×G−→ A is a group with the pointwise multiplication, that

is, f g(σ ,τ) = f (σ ,τ)g(σ ,τ). The identity isf ≡ 1∈A. The group is denoted byZ2(G,A).
Conversely: Fix a groupG and an abelian groupA. Fix an action ofG on A (i.e. a map

G−→ Aut(A)). A 2-cocycle f : G×G−→ A defines an extension of groups

1−→ A−→ Γ−→G−→ 1,

where the elements ofΓ are of the formauσ ,a∈ A,uσ a symbol, one for each elementσ

of G. The multiplication inΓ is defined by

(auσ )(buτ) = aσ(b) f (σ ,τ)uστ .

It is easy to show that the extension obtained “gives back” the action ofG on A. Now
put an equivalence relation on the extensions ofG by A. Let

1 −−−−→ A −−−−→ Γ1 −−−−→ G −−−−→ 1

id

y y id

y
1 −−−−→ A −−−−→ Γ2 −−−−→ G −−−−→ 1

be two extensions. We say that they are equivalent if there is a homomorphism (hence an
isomorphism, check!)Γ1 −→ Γ2 making the two squares commutative. Denote the set of
equivalence classes byE(G,A). We have defined a map

φ : Z2(G,A)−→ E(G,A).

Now on the setE(G,A) one can define a natural group structure which makes the mapφ

a group homomorphism. Furthermore by our discussionφ is surjective ontoE(G,A). The
kernel ofφ (check!) consists of the 2-cocyclesf : G×G−→ A for which there exists a
1-parameter family{λσ}σ∈G in A such that

f (σ ,τ) = λσ σ(λτ)λ−1
στ for everyσ ,τ ∈G.

Such f is called a coboundary and we denote kerφ = B2(G,A).
Thus we obtain Z2(G,A)/B2(G,A) ' E(G,A). We denote the quotient

Z2(G,A)/B2(G,A) = H2(G,A) and call it the second cohomology group ofG with co-
efficients inA. (Note thatA is aG-module.)

Remarks: 1) the trivial 2-cocycle yields the semidirect productΓ = GnA.
2) A trivial action of G on A is equivalent to the extension 1−→ A−→ Γ −→ G−→ 1
being central(A ↪→ Z(Γ)).
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3. OTHER COHOMOLOGY GROUPS

Given a groupG and aG-moduleA (written multiplicatively) we defineH0(G,A) = AG,
theG invariant elements inA.

H1(G,A) = Z1(G,A)/B1(G,A) whereZ1(G,A) = f : G−→ A : f (στ) = f (σ)σ( f (τ)).
Such f is called 1-cocycle or crossed homomorphism.

B1(G,A) = f : G−→ A : ∃a∈ A with f (σ) = σ(a)a−1, for everyσ ∈G.
In general,Hn(G,A) is defined as follows (for this description we letA have an additive

structure).
ConsiderZ as a trivialG module(ga= a, ∀g∈G, a∈ Z). Let

→ Pn → Pn−1 → ··· → P1 → P0 → Z→ 0

be a projective resolution ofZ over ZG. DeleteZ from this exact sequence and to the
deleted complex apply the contravariant functorF = HomZG(−,A). We get

0→ HomZG(P0,A) d0−→ HomZG(P1,A) d1−→ HomZG(P2,A)

→ ··· → HomZG(Pn,A) dn−→ HomZG(Pn+1,A)→

This is a complex, usually nonexact (sinceF is not exact). We “define”

Hn(G,A) =
Kerdn

Imdn+1
.

One shows that up to isomorphism, the groupHn(G,A) does not depend on the resolution.
To check that this definition coincides with the definition of the low dimension cohomology
groups, one uses the standard resolution in its non-homogeneous form, also called thebar
resolution.

Explicitly, let Fn, n≥ 1 be the freeZG module with a basis
{
[g1|g2| . . . |gn] : gi ∈ G

}
,

and forn = 0, we letF0 ' ZG, i.e., the free module with a unique basis element denoted
by [ ]. The differentials∂ : Fn → Fn−1 are defined in terms of theG basis[g1| . . . |gn] by

∂ =
n
∑

i=0
(−1)idi , wheredi is theZG-homomorphism given by

di [g1| . . . |gn] =


g1

[
g2| . . . |gn

]
i = 0[

g1| . . . |gi−1|gigi+2| . . . |gn
]

0 < i < n[
g1| . . . |gn−1

]
i = n.

Let us check for example that it yields the above construction ofH2(G,A). We write the
resolution

→ F3
∂3−→ F2

∂2−→ F1
∂1−→ F0

ε−→ Z→ 0,

deleteZ and apply the functorF = HomZG(−,A) (say, A with additive structure). We
obtain

0→ HomZG(F0,A)
∂ ∗1−→ HomZG(F1,A)

∂ ∗2−→ HomZG(F2,A)
∂ ∗3−→ HomZG(F3,A)

H2(G,A) =
Ker∂ ∗3
Im∂ ∗2

.

Actas del VIII Congreso Dr. Antonio A. R. Monteiro, 2005



THE BRAUER GROUP AND THE PROJECTIVE SCHUR SUBGROUP OF A FIELD 135

Take f ∈ HomZG(F2,A) and require∂ ∗3 f = 0, i.e., on the basis ofF3,

(∂ ∗3 f )
[
σ |τ|ν

]
= 0 or f

(
∂3

[
σ |τ|ν

])
= 0

for everyσ ,τ,ν ∈G. This means that

f

( 3

∑
i=0

(−1)idi
[
σ |τ|ν

])
= f

(
σ [τ|ν ]− [στ|ν ]+ [σ |τν ]− [σ |τ]

)
= 0.

Since f is aZG linear map (denotingf ([∗|∗]) by f (∗,∗)), we get

f (στ,ν)+ f (σ ,τ) = f (σ ,τν)+ f (τ,ν)σ .

If A has a multiplicative structure we get the required form.
The∂ -coboundaries are computed similarly.

4. COHOMOLOGY OF CYCLIC GROUPS

For our discussion on Brauer groups it is convenient to compute the cohomology groups
of cyclic groups (finite).

Let G be a finite cyclic group of ordern generated byσ (G = 〈σ〉). Instead of using the
standard resolution, in this case, one can use a much simpler resolution which is periodic,
namely,

· · · → ZG
σ−1−−→ ZG

Σ−→ ZG
σ−1−−→ ZG

ε−→ Z→ 0,

where the mapsΣ andσ −1 are given by

Σ : ZG −→ ZG

z 7−→
(
1+σ +σ

2 + · · ·+σ
n−1)z

(σ −1) : ZG −→ ZG

z 7−→ (σ −1)z.

One checks that this sequence is exact. Apply HomZG(−,A) to the deleted complex and
get

0→ HomZG(ZG,A)
(σ−1)∗−−−−→ HomZG(ZG,A) Σ∗−→ HomZG(ZG,A)

(σ−1)∗−−−−→ HomZG(ZG,A)→

In order to computeH2(G,A) we have to compute

Ker(σ −1)∗

ImΣ∗
' AG

ImΣ∗
=

AG

〈(1+σ +σ2 + · · ·+σn−1)x〉
.

It follows that an element inH2(G,A) is represented by a single element inAG. This simple
fact will be important for some future discussions.

Explicitly, if f : G×G→ A is a 2-cocycle (G cyclic) then the classα = [ f ] may be
represented by a 2-cocycle of the form

g(σ i ,σ j) =

{
a∈ AG i + j ≥ n (= ordG)
1 i + j < n.
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The elementa ∈ AG is obtained in terms of the given 2-cocyclef by (A with the multi-
plicative structure)

a = f (σ ,σ) f (σ ,σ2) f (σ ,σ3) . . . f (σ ,σn−1).

(Here we are assuming thatf (1,σ i) = f (σ i ,1) = 1.)

5. RESTRICTION, INFLATION , CORESTRICTION

We will discuss briefly some maps in cohomology.
Let G be a group andH a subgroup. Given aG-moduleA, one has a map

res :Hn(G,A)→ Hn(H,A),

which can be realized in terms of then-cocycles arising from the bar resolution. More pre-
cisely, if f : G×G×·· ·×G−→ A is ann-cocycle representing an elementα ∈ Hn(G,A),
then resα is the element inHn(H,A) represented by the restriction off to H×H×·· ·×H.

A different way to realize the restriction map is the following:
Let→Pn→Pn−1→ ···→Z→ 0 be a projective resolution ofZ as a trivialZG-module.

SinceZG is free overZH (coset representatives form a basis), projective modules overZG
are projective asZH modules and hence the above complex is also a projective resolu-
tion of Z as a trivialZH module. In order to computeHn(G,A) andHn(H,A), we apply
the functorsFG = HomZG(−,A) andFH = HomZH(−,A) to the deleted complexes respec-
tively. We get

0→ HomZG(F0,A)→ HomZG(F1,A)→ ··· → HomZG(Fn,A)→
0→ HomZH(F0,A)→ HomZH(F1,A)→ ··· → HomZH(Fn,A)→

The restriction mapHn(G,A)→Hn(H,A) is the map in cohomology induced by the “iden-
tity” map

HomZG(Fn,A)→ HomZH(Fn,A).

The inflation map is well understood by means ofn-cocycles arising from the bar reso-
lution. Let N be a normal subgroup inG andG/N the quotient. LetA be aG-module
(ZG-module), and letAN be theN-invariants inA. ThenAN is a G/N module. The in-
flation map inf :Hn(G/N,AN)→ Hn(G,A) is given by inf(g)(σ1, . . . ,σn) = g(σ̄1, . . . , σ̄n),
whereσ̄ denotes the coset inG/N represented byσ ∈G.

Finally, we wish to define the corestriction map. LetG be a group andH a subgroup of
finite index (say,n). Let us define

Hr(H,A)→ Hr(G,A).

In dimension zero the definition goes as follows: Pick a set of representatives for the left
cosets ofH in G. G/H = {s1, . . . ,sn}.

cor :H0(H,A) = AH −→ AG = H0(G,A)
a −→ ∑

s∈G/H

s(a)

Sincea is H invariant, the definition does not depend on the set of representatives.
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The extension of this map to higher dimension cohomology groups can be done by
general theory. Let us give here a more down-to-earth approach, namely, using resolutions
of Z as a trivialZG andZH module. Let

· · · → Pm→ Pm−1 → ··· → P0 → Z→ 0

be a projective resolution ofZ as a trivialZG module. As above, consider this resolution
overZH, applyFG andFH to the deleted complexes and get

0 −−−−→ HomZH(P0,A) −−−−→ HomZH(P1,A) −−−−→ . . . −−−−→ HomZH(Pn,A)y y πn

y
0 −−−−→ HomZG(P0,A) −−−−→ HomZG(P1,A) −−−−→ . . . −−−−→ HomZG(Pn,A)

The map
πn : HomZH(Pn,A)→ HomZG(Pn,A)

is defined by
πn : f 7−→ ∑

s∈G/H

s f(s−1−)

or (πn f )(x) = ∑
s∈G/H

s f(s−1x).

In order to show that this map induces a map in cohomology, one shows that the squares
that appear in the diagram above are commutative, i.e., the map{πn} is a map of com-
plexes.

Proposition 5.1. Let G be a group, H a subgroup of finite index,(G : H) = n, A a G-
module. Then the composition of the maps

Hr(G,A) res−→ Hr(H,A) cor−→ Hr(G,A)

cor◦ res= n (multiplication by n). In particular, if G is finite of order n then (take H= {1})
n annihilates Hr(G,A).

Proof. Consider the diagram (P∗ is a projective resolution ofZ overZG)

0 −−−−→ HomZH(P0,A) −−−−→ HomZH(P1,A) −−−−→ . . . −−−−→ HomZH(Pn,A)yπn

0 −−−−→ HomZG(P0,A) −−−−→ HomZG(P1,A) −−−−→ . . . −−−−→ HomZG(Pn,A)

Start with f ∈HomZG(Pn,A). res( f ) is the “same” function viewed as anH-linear function.
Since it isG-linear,s f s−1 = f andπn(res( f )) = n f .

6. CROSSED PRODUCT ALGEBRAS

Let K be a commutative ring with unit element 1. LetG be a finite group, and denote
by KG=

{
Σ xσ uσ : xσ ∈ K, uσ a symbol, one for each elementσ ∈G

}
the group algebra

where the multiplication is defined by(xσ uσ )(yτuτ) = xσ yτuστ .
Now assume thatG acts onK via a homomorphismt:

t : G→ Aut(K).
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On the “same” left freeK-moduleKG we introduce a new multiplication using the action
(as in semidirect product)

(xuσ )(yuτ) = xσ(y)uστ

whereσ(y) = t(σ)(y). Now extend this multiplication by the distributive law. We obtain
an associative ring and denote it byKtG.

Now we can introduce another perturbation on the multiplication. SinceG acts onK, the
invertible elementsK∗ in K form a (multiplicative)G module (i.e.,rσ ∈ ZG acts onx by
rσ(x) = σ(x)r ) and therefore one can consider the second cohomology groupH2(G,K∗)
of G with coefficients in theG moduleK∗. As explained in Section 2, an elementα ∈
H2(G,K∗) is represented by a 2-cocyclef : G×G→ K∗.

On the same underlying freeK-module asKtG (or KG) we define a new multiplication
so that it satisfies the rule

(xuσ )(yuτ) = xσ(y) f (σ ,τ)uστ .

We denote this ring byK f
t G. The associativity follows from the 2-cocycle condition sat-

isfied by f . It is easy to check that, up to a ring isomorphism, this construction does not
depend on the representativef but only on the cohomology class[ f ] = α ∈ H2(G,K∗).
This explains the notation

Kα
t G.

This ring is called the crossed product ofK with G.
If α is trivial (i.e., represented byf ≡ 1) we recoverKtG, the skew group ring ofK with

G.
If the action ofG onK is trivial one writesKαG and calls it the twisted group ring ofK

with G.

It is time for some examples.
Let K/k be a finite Galois extension of fields andG = Gal(K/k) be the Galois group.

Then we can form the skew group algebra (trivial 2-cocycle)KtG (the action onK is the
Galois action). Let(K : k) = n. Then the dimension ofKtG as aK vector space isn and as
ak-vector space isn2.

The next proposition shows thatKtG is a simple algebra. More generally we show

Proposition 6.1. Let K be a field and G a group (not necessarily finite) acting on K faith-
fully (i.e.,kert = {1} where t: G→ Aut(K)). Letα ∈ H2(G,K∗) and f : G×G→ K∗ be
a 2-cocycle representingα. Then the crossed product Kα

t G is simple.

Proof. We have to show thatKα
t G has no non-trivial 2-sided ideals. LetI 6= 0 be an ideal

in Kα
t G (2-sided) and letz= x1uσ1 + x2uσ2 + · · ·+ xruσr be an element inI of minimum

length. If r = 1, thenz= x1uσ1 is invertible andI = Kα
t G.

So assume thatr ≥ 2. Multiplying by u−1
σ1

we can assume that

z= x1ue+x2uσ2 +x3uσ3 + · · ·+xruσr (e identity inG).

Now, since the action ofG onK is faithful, there existsy∈K with σ2(y) 6= y. We claim that
the elementω = yz−zyhas length that is shorter than the length ofz, and also 06= ω ∈ I .
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This is a contradiction to the minimality ofz. Indeed,

ω = yx1ue+yx2uσ2 +yx3uσ3 + · · ·+yxruσr

−
(
x1uey+x2uσ2y+ · · ·+xruσr y

)
= x2

(
y−σ2(y)

)
uσ2 +x3

(
u−σ3(y)

)
uσ3 + · · ·+xr

(
y−σr(y)

)
uσr .

Sincey−σ2(y) 6= 0, the claim is proved.
So, the skew group algebraKtG, whereG = Gal(K/k), is simple artinian of dimension

n2 overk = KG. We claim that

KtG'Mn(k),

whereMn(k) is the algebra of alln×n matrices with entries ink. This is proved as follows.
ConsiderV = K, then-dimensional vector space overk. We define a map

η : KtG −→ Endk(K) ('Mn(k))
xuσ 7−→ ηxuσ

, ηxuσ
(y) = xσ(y).

One checks thatη is a homomorphism of rings. SinceKtG is simple,η is a monomor-
phism, and since the two algebras have the same dimension overk, η is an isomorphism.

Consider the particular case(K/k) = (C/R), G = C2 = {1,σ}. By the preceding para-
graph,CtC2'M2(R) (σ(z) = z̄ the complex conjugation). Now we introduce a 2-cocycle.
By the discussion on cohomology of cyclic groups, we need to consider 2-cocycles of the
form

f (1,1) = f (σ ,1) = f (1,σ) = 1, f (σ ,σ) = a∈ R∗.

Two 2-cocyclesf ,g are equivalent if they differ by a coboundary. Here, it simply says that
if g(σ ,σ) = b and 1= g(1,1) = g(1,σ) = g(σ ,1) then f ∼ g if and only if

ab−1 = zσ(z) for some z∈ C.

In other words,a = zz̄b= |z|2b. This means thatf ∼ g if and only if ab−1 > 0. So,
in H2(C2,C∗) there are two elements, one represented by the trivial cocyclef ≡ 1 and
another one represented by the cocycleg(1,1) = g(1,σ) = g(σ ,1) = 1, butg(σ ,σ) =−1.

So let us check what isCg
t C2. It is a simple algebra 4-dimensional overR. We claim

thatCg
t C2 'H is the quaternion algebra of dimension 4 overR. This is a division algebra

with centerR.

H =
{

R1⊕Ri ⊕R j ⊕Rk : i2 = j2 = k2 =−1

i j = k =− ji

jk = i =−k j

ki = j =−ik.

The isomorphismCg
t C2 →H is given by

(a+ ib) = (a+ ib)ue 7−→ a+ ib

uσ 7−→ j.

As noted in the examples, the center of the algebraKα
t G, whereG = Gal(K/k) andα ∈

H2(G,K∗), is k = KG. This is true in general.
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To see this, note that after an easy manipulation with 2-cocycles one can get a normal-
ized representative, namely a 2-cocyclef with

f (e,σ) = f (σ ,e) = 1 for every σ ∈G.

This simply says that we may considerue as the identity element inK f
t G. Having done so,

we see immediately that the elementsxue, x∈ k are in the center ofKα
t G.

Let us show thatkue is exactly the center. Take

p = x1uσ1 +x2uσ2 + · · ·+xruσr ∈ Z(Kα
t G)

and assume that the coefficientxi of someσi 6= e is not zero. For suchσi there existsy∈ K
such thatσi(y) 6= y. So on the one hand,py= yp. On the other hand, the coefficients of
uσi in pyandyparexiσi(y) andxiy, respectively. This is impossible sinceuσ j form a basis
overK.

7. BRAUER GROUPS

Fix a fieldk. Consider the setM (k) of all finite dimensional, central simple algebras
overk. By the Wedderburn theorem, such an algebraA is isomorphic to the algebra of all
n×n matricesMn(D) with entries in a division algebraD and somen. The center ofD
is k, andD is finite dimensional overk (the center ofMn(D) is the scalar matricesk · I ).
Furthermore,D is determined uniquely (and hencen) up to an isomorphism ofk-algebras.

The preceding remark on the uniqueness ofD allows us to introduce an equivalence
relation on the set ofk-central simple algebras, namelyA,B∈M (k), A∼B iff the division
algebrasDA andDB determined by the Wedderburn theorem arek-isomorphic:(

A'Mn1(DA), B'Mn2(DB) then DA ' DB

)
.

The set of equivalence classes is denoted by Br(k).
An important reason for introducing this equivalence relation is the following: We wish

to define an algebraic structure on the set of division algebras, central overk. The tensor
product overk of two k-central (simple) finite dimensional division algebras isk-central
simple but not necessarily a division algebra; in other words, the set of division algebras is
not closed under⊗k. For example,H⊗R H'M4(R).

The quotient set Br(k) is in 1-1 correspondence with the set of finite-dimensional
k-central division algebras. Furthermore, we define a multiplication on Br(k) making Br(k)
an abelian group: Explicitly, for[A], [B] ∈ Br(k) (two classes represented byA andB), we
let

[A][B] = [A⊗k B].

There are several things to check.

1. If A andB arek-central simple algebras (let us agree that the word “algebra” already
implies finite dimensional) thenA⊗k B is ak-central simple algebra and hence[A⊗k

B] ∈ Br(k).
2. This multiplication is well defined. LetA1 ∼ A2, B1 ∼ B2. Write

A1 'Mr1(D) B1 'Ms1(D̃)

A2 'Mr2(D) B2 'Ms2(D̃)
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ThenA1⊗kB1'Mr1s1(D⊗kD̃) andA2⊗kB2'Mr2s2(D⊗kD̃), and ifD⊗kD̃'Mt(D̂)
then

A1⊗k B1 'Mr1s1t(D̂), A2⊗k B2 'Mr2s2t(D̂),
so the algebras are equivalent.

3. The tensor product up to an isomorphism ofk-algebras is associative and commuta-
tive.

4. The identity element is represented byk or, in general, byMn(k). Clearly, [k][A] =
[k⊗k A] = [A].

5. Given a class[A] ∈ Br(k), its inverse is given by an element[B] with [A][B] = [k]. In
other words, we need an algebraB such that

A⊗k B'Mn(k) some n.

Hence, we wish to findB such thatA⊗k B' Endk(V) (n = dimkV).
So, we are looking for an algebraB such thatA⊗k B acts on a vector spaceV.

Such algebra is given byAop. As ak-vector spaceAop' A but the multiplication is
reversed ( ¯a∗ b̄ = ba).

The algebraA⊗k Aop acts onA by x⊗ ȳ(z) = xzy. This gives a map

ϕ : A⊗k Aop−→ Endk(A).

If dimk A= n2, then dimA⊗k Aop = n4, and also dimk Endk(A) = n4. Finally, since
A⊗k Aop is central simple,ϕ is an isomorphism.

Thus we obtain that Br(k) is an abelian group.

8. SOME BASIC EXAMPLES

1. If k = k̄ is algebraically closed, then Br(k) = 0. This follows from the fact that there
are no nontrivialk-central simple division algebras overk = k̄. Note that the fieldC is
embedded in the quaternion algebraH' Cg

t C2 but is not central!

Proof. If D is a k central division algebra, letz∈ D\k. Sincek is central, the algebra
generated byk andz in D is commutative and therefore a field (take all inverses that already
exist inD). Sincek = k̄ we have〈k,z〉= k, that is,z∈ k.

2. If k is a finite field then Br(k) = 0. If D is k-central simple overk thenD is finite
dimensional over a finite field and hence a finite algebra.

A theorem of Wedderburn states that there are no noncommutative finite division alge-
bras. So Br(k) = 0.

3. If k = R it is known that theR central division algebras areR,H. So, Br(R) = Z2.
The generator is[H] andH⊗R H'M4(R), i.e.,[H][H] = 1 = [R].

9. THE COHOMOLOGICAL DESCRIPTION

Let K/k be ann-dimensional Galois extension of fields. LetG= Gal(K/k) be the Galois
group. We can define a map (called restriction)

res : Br(k) −→ Br(K)
[A] 7−→ [A⊗k K].
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A is k-central simple and soA⊗k K hask⊗k K ' K in its center. It is not difficult to prove
that k⊗k K is exactly the center ofA⊗k K, and therefore[A⊗k K] defines an element in
Br(K).

Furthermore, the map res is a homomorphism of groups. This follows from the isomor-
phism

(A⊗k B)⊗k K ' (A⊗k K)⊗K (B⊗k K).

Let us denote the kernel of res by

Br(K/k).

It consists of classes in Br(k) such that[A⊗k K] = [K], i.e.,

A⊗k K 'Mr(K) (r = dimk A check!)

We say that ak-central simple algebra is split byK if A⊗k K ' Mr(K). So, Br(K/k) is
the subgroup that consists of all elements that are represented by algebras that are split by
K.

We have an exact sequence

0→ Br(K/k)→ Br(k) res−→ Br(K).

We wish to describe the subgroup Br(K/k) (called theK/k relative Brauer group) but
before that, we exhibit some results concerning splitting fields and some consequences.

If A' Mr(D) is ak-central simple algebra,D a k-central division algebra, it is easy to
see that a fieldK splitsA if and only if it splitsD. This follows immediately from

A⊗k K 'Mr(D)⊗k K 'Mr(k)⊗k D⊗k K 'Mr(D⊗k K).

So if K splitsMr(D), thenMr(D)⊗k K ' Mrs(K) and by the uniqueness in Wedderburn’s
theorem,D⊗k K 'Ms(K). The converse is clear.

Let D bek-central simple and letK ' k̃, the algebraic closure ofk. Since there are no
nontrivial division algebras overK, we have

D⊗k K 'Mr(K).

Computing dimensions we see that

dimk D = dimK D⊗k K = r2.

In other words, the dimension of a division algebra over its center is always a square. The
positive square rootr is called the index ofD denoted by ind(D).

In order to find a finite dimensional splitting field forD, take a maximal fieldK in
D. Such a field is characterized by being equal to its centralizer inD (i.e., CD(K) = K).
Moreover, it is not difficult to show that its dimension overk is n =

√
dimk D.

The claim is that a maximal field inD splits D. In order to show that, we show that
D⊗k K ' EndK(D)'Mr(K). Here we viewD as a right linear space overK. Consider the
endomorphisms

D` =
{

La |a∈ D, La : x 7−→ ax for x∈ D
}

Kr =
{

Ru |u∈ K, Ru : x 7−→ xu for x∈ D
}

.
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D` andKr are in End(D) and they commute there. Thus we have a homomorphism

ϕ : D⊗k K −→ EndK(D) of rings

a⊗u 7−→ LaRu.

SinceD⊗k K is simple, this is an isomorphism (possibly not surjective). But the image of
ϕ in End(D) commutes with the action ofKe' K and therefore

ϕ : D⊗k K −→ EndK(D).

A computation of the dimensions of these algebras as vector spaces overK shows that they
are equal. Henceϕ is an isomorphism onto EndK(D)'Mr(K).

The extensionK/k may not be Galois but, if chark = 0, certainlyK/k is separable and
we can takeL ⊃ K ⊃ k, the Galois closure.L/k is a finite extension and splitsD. This
follows from the simple but important fact that ifK/k splitsD, then every extensionL of
K also splitsD. Indeed,

D⊗k L' D⊗k K⊗K L'Mr(K)⊗K L'Mr(L).

So in characteristic zero we have found a finite Galois splitting field for every division
algebraD. In characteristicp> 0 it is not difficult to show the existence of a finite separable
extension ofk that splitsD. For many years it was not known whether every division
algebracontainsa maximal field which is Galois. This was shown to be false by Amitsur
in 1972 using generic constructions.

As mentioned above, we wish to describe the relative Brauer group Br(K/k) via co-
homology and, more precisely, to represent the elements in Br(K/k) by crossed products
algebras. Since every element in Br(k) is split by a finite Galois extension, we will con-
clude that every element in Br(k) may be represented by a crossed product algebra.

So letK/k be a finite Galois extension of dimensionn andG = Gal(K/k) be the Galois
group. We consider the skew group algebraKtG (t denotes the Galois action).

We have shown thatKtG ' Mn(k) which “is” the identity element in Br(k) (or in
Br(K/k)). For everyα ∈H2(G,K∗) construct the crossed product algebraKα

t G. We know
that this is ak-central simple algebra of dimensionn2 overk. We claim thatK splitsKα

t G
(note thatKα

t G is not necessarily a division algebra). The argument here is the same as
the one used for division algebras. Note that the fieldK = Kue is a maximal field inKα

t G.
Indeed, an element outsideKue must have a non-trivial componentxuσ , σ 6= eanduσ does
not commute withK. To end the proof, we use the fact that the{uσ} form a basis ofKα

t G
overK. Thus we have defined a map

η : H2(G,K∗) −→ Br(K/k)⊂ Br(k)
α 7−→ [Kα

t G].

The main claim here is that this map is an isomorphism of groups. To show thatη is a
homomorphism, one shows that

Kα
t G⊗k Kβ

t G' Kαβ

t G⊗k KtG.

SinceKtG'Mn(k), this implies

[Kα
t G][Kβ

t G] = [Kαβ

t G].
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Since the algebraic closure ofk contains splitting fields for all elements in Br(k) one can
show (taking limits) that

H2(Gk,k
∗
s)' Br(k),

whereGk is the absolute Galois group of the fieldk andk∗s is the separable closure ofk.
The cohomological description has many applications as we shall see. First we show

that Br(k) is a torsion group (i.e., every element is of finite order). Indeed, consider the
composition

H2(G,K∗) res−→ H2({e},K∗) cor−→ H2(G,K∗).

We have shown that cor◦ res= n but here cor◦ res= 0 sinceH2({e},K∗) = 0, son = |G|
annihilates every element inH2(G,K∗). The order ofα ∈ Br(k) is denoted by exp(α).

10. THE SCHUR AND PROJECTIVESCHUR SUBGROUPS OF THEBRAUER GROUP

Let k be a field of characteristic zero, andN be a finite group.kN denotes the group
algebra. By Maschke’s theorem it is semisimple Artinian. Then we can write the following
(using the Wedderburn theorem):

kN' k⊕Mr2(D2)⊕·· ·⊕Mrn(Dn).

The fieldk' kue is embedded in the center of each simple component, i.e., we have

k⊂ ki = z(Mr i (Di))' z(Di).

Consider only the simple components withk = z(Mr(D)). These components arek-central
simple algebras and therefore determine elements in Br(k).

Definition 10.1. A k-central simple algebraB'Mr(D) is called a Schur algebra overk iff
B is the homomorphic image of a group algebrakN for some finite groupN.

As mentioned above, such algebras determine elements in Br(k) and we consider the
subgroup of Br(k) generated by elements in Br(k) that are represented by Schur algebras.
We denote this subgroup byS(k) and call it the Schur group ofk. We claim thatS(k) is not
only generated but rather consists of classes represented by Schur algebras. This follows
from the fact that ifA andB are Schur algebras overk and if they are assumed to appear in
the decomposition ofkN1 andkN2 respectively, thenA⊗k B is a homomorphic image (i.e.,
appears in the decomposition) ofkN1×N2.

Remark10.2. The statement above onS(k) holds also in positive characteristic. Forp> 0,
kN is not necessarily semisimple. There one defines a Schur algebra overk as ak-central
simple algebra which is a homomorphic image of a group algebrakN.

Sometimes it is good to have an “internal” definition.

Proposition 10.3. A k-central simple algebra B is a Schur algebra over k if and only if
B∗, the group of units in B, contains a finite subgroupΓ, which spans B over k. We write
B = k(Γ). (Warning: Do not confuse k(Γ) with the group algebra kΓ. The notation k(Γ)
simply says that k(Γ) is spanned over k by the elements ofΓ.)

The proof is very easy. IfB is a Schur algebra overk, it is the homomorphic image of
kN (some finite groupN). Let ϕ : kN→ B be the projection ontoB. Thenϕ(N)⊂ B∗ is a
finite group, and sinceϕ is k-linear andN spanskN overk, we see thatΓ = ϕ(N) spansB
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overk. For the converse, ifB is k-central simple and is spanned by a finite groupΓ ⊂ B∗,
thenB = k(Γ) is the homomorphic image of the group algebrakΓ in the obvious way.

For example, consider the algebra of quaternions overR:

H =
{
R1⊕Ri⊕R j⊕Rk

}
.

We takeΓ =
{
±1,±i,± j,±k

}
, which is a quaternion group of order 8. Clearly,Γ spans

H overR, but it is certainly not a basis. There is a surjective map

RΓ −→ H
us 7−→ s where s∈ {±1,±i,± j,±k}.

Although the characterization of Schur algebras given above has some advantages, still it
does not give an “explicit” way to construct them. Let us exhibit here such a construction
(called cyclotomic algebra). LetK = k(ζ ) be a finite cyclotomic extension (ζ is ann-th
root of unity). Then, clearly, the fieldK is spanned overk by the finite group〈ζ 〉. Let
G = Gal(K/k) and form the skew group algebraKtG. To form a crossed product, we must
twist the multiplication by a 2-cocyclef : G×G → K∗. Instead of taking an arbitrary
2-cocycle we take a cocycle with values in the finite group〈ζ 〉, i.e.,

f : G×G−→ 〈ζ 〉 ⊂ K∗.

The crossed product algebraKα
t G, α = [ f ], is called a cyclotomic algebra. By general

theory, we know thatKα
t G is ak-central simple algebra. We wish to show thatKα

t G is a
Schur algebra, i.e., spanned overk by a finite group of units. Indeed, let

1−→ 〈ζ 〉 −→ Γ−→G−→ 1

be the extension of groups defined by the Galois action ofG on K (and hence on〈ζ 〉) and
by the given 2-cocyclef : G×G→ 〈ζ 〉. Since〈ζ 〉 andG are finite, the extensionΓ is also
finite and we claim that it spansKα

t G over k. SinceΓ contains〈ζ 〉, it spansK. Further,
the elementsuσ , σ ∈ G in Γ spanKα

t G over K proving the claim. We view cyclotomic
algebras as a “natural” construction of Schur algebras.

Theorem 10.4(Brauer–Witt). Every element in the Schur group of k is represented by a
cyclotomic algebra. (In other words, every Schur algebra is equivalent to a cyclotomic
algebra.)

The Schur group of a fieldk has been computed in some cases. For fields of positive
characteristicS(k) = 0. Here is the idea of the proof:

If k(Γ)'Mr(D) is a Schur algebra,Γ is finite, one shows thatk(Γ) is of the form

k(Γ) = k⊗k0 k0(Γ),

wherek0(Γ) is k0-central simple algebra, andk0 is a finite extension of the prime field in
k. Consequently,k0 is finite and we know that Br(k0) = 0. Sok0(Γ) is a matrix algebra
Mr(k0), and thereforek(Γ)'Mr(k).

For a local field,S(k) is rather small. It turns out to be finite (cyclic) where Br(k)'Q/Z.
We wish now to study the projective analog of the Schur group. The groupS(k) is related

to representations exactly asPS(k), the projective Schur group, is related to projective
representations of finite groups. LetkN be a group algebra as above. Letα ∈ H2(N,k∗),
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k∗ a trivial N module, and letf : N×N → k∗ be a 2-cocycle representingα. We can form
the twisted group algebrakαN (recall the multiplicationxuσ yuτ = xy f(σ ,τ)uστ ).

Let us explain how “projectivity” comes into the game. It is well known that a repre-
sentation of the groupN over the fieldk is a k-vector spaceV with a homomorphism of
groups

N−→GLk(V).
This is equivalent to saying thatV is akN module. A projective representation ofN is a
vector spaceV overk and a map (not necessarily homomorphism)

ϕ : N−→GLk(V)

such that its compositionν ·ϕ with the natural homomorphism

ν : GL(V)−→ PGL(V)'GL(V)
/

k∗

is a homomorphism of groups. It is not difficult to see that this is equivalent to saying that
V is a module over a twisted group algebrakαN, α ∈ H2(N,k∗).

Let us buildα ∈ H2(N,k∗) for a given projective representation

η : N−→ PGL(V).

For everyσ ∈N, choose a representativeuσ ∈GL(V) of η(σ)∈PGL(V). Sinceη(σ)η(τ)
= η(στ) in PGL(V), the elementsuσ uτ anduστ differ by an element ink∗:

uσ uτ = f (σ ,τ)uστ .

It is easily checked thatf : N×N → k∗ is a 2-cocycle and thatV is akαN module where
α = [ f ]. Having a twisted group algebrakαN we wish to define projective Schur algebras
and the projective Schur group. This generalization was introduced by Lorenz and Opolka
in 1976. As we shall see, the construction is much richer and many “natural” classes
in Br(k) belong to the projective Schur group. Here are the definitions and some basic
statements:

The twisted group algebrakαN is semisimple (we are assuming that char(k) = 0, and by
Maschke’s theorem,kαN is semisimple) and so it decomposes into a direct sum of simple
algebras. Again,

kαN'Mr1(D1)⊕Mr2(D2)⊕·· ·⊕Mrs(Ds).
(Note that the trivial representationk is not necessarily a module overkαN. In fact,k is a
kαN module if and only ifα = 0 in H2(N,k∗).)

Again we choose the simple algebrasMr(D) (in such decomposition) with centerk. In
general,k is contained inki = Z(Mr i (Di)). Thus we define a projective Schur algebra over
k to be ak-central simple algebra which appears in the decomposition of a twisted group
algebrakαN for some finite groupN and someα ∈ H2(N,k∗).

The projective Schur group ofk is the subgroup of Br(k) generated by (and again con-
sisting of) the element in Br(k) that may be represented by projective Schur algebras. We
denote this subgroup byPS(k). We clearly have

S(k)⊂ PS(k)⊂ Br(k).

As Schur algebras, also projective Schur algebras have an “internal” characterization. We
claim that ak-central simple algebraB is a projective Schur algebra if and only if it is
spanned overk by a groupΓ⊂ B∗ that isfinite modulo k∗.
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Let us show this. InkαN, consider the group of “trivial” units. It consists of the mono-
mial elements

k∗αN = {xuσ ∈ kαN}.
This is a subgroup of(kαN)∗ and clearly it spanskαN overk (in fact, even overZ).

Now if B is a homomorphic image ofkαN (i.e., appears in the decomposition ofkαN
into simples) underϕ : kαN → Mr(D), the imageΓ = ϕ(k∗αN) ⊂ B∗ spansB overk, and
Γ is finite modulok∗ (becausek∗αN is finite modulok∗). Conversely, ifB' k(Γ), whereΓ
is finite modulok∗, we consider the central extension

1−→ k∗ −→ Γ−→ Γ/k∗ ' H −→ 1

(H finite). This extension determines an elementβ in H2(H,k∗) and one checks thatB is
the homomorphic image ofkβ H under the obvious map

kαH −→ B

uσ 7−→ uσ .

The projective Schur group of a fieldk is much bigger than the Schur group. We will
show that in two important cases it coincides with the full Brauer group. Letk be a num-
ber field that is a finite extension ofQ (rationals). It follows from class field theory that
everyk-central simple algebra is split by a cyclic extensionL of k which is contained in a
cyclotomic extension ofk (L/k is cyclic if it is Galois, and Gal(L/k) is cyclic).

So we havek⊂ L ⊂ F, F = k(ξ ), whereξ is anr-th root of unity. LetS= Gal(F/k),
G = Gal(L/k). Take[B] ∈ Br(k). We are to show that[B] ∈ PS(k). Suppose first that the
algebraB has a splitting fieldL that is a cyclic cyclotomic extension ofk (rather than cyclic
contained in a cyclotomic extensionF of k). From Section 9 we know that[B] ∈ Br(L/k)
and so[B] is represented by a crossed productLα

t G, G= Gal(L/k), α ∈H2(G,L∗). L is a
cyclotomic extension ofk, so spanned by a finite extension overk. By assumption,G= 〈σ〉
is cyclic, so we can find a representative

f (σ i ,σ j) =

{
a∈ k∗ i + j ≥ ord(G)
1 i + j < ord(G).

Since f has value ink∗ it defines an extensionΓ

1−→ k∗ −→ Γ−→G−→ 1

which is clearly finite modulok∗. Furthermore, the groupΓ is contained inLα
t G and spans

Lα
t G overL. So the group generated byΓ and〈ζ 〉 is finite modulok∗ (Γ normalizes〈ζ 〉)

and spansLα
t G overk. So we have found a spanning groupΓ overk such that|Γ/k∗|< ∞.

This shows that[Lα
t G] ∈ PS(k).

Now drop the assumption thatL is cyclotomic (L is cyclic contained inF , F/k is cyclo-
tomic). Our algebraB is split byL and, sinceF ⊃ L, is split also byF .

SoB is similar to a crossed productLα
t G, G cyclic. Thus we can choose a representative

f of α with values ink∗. So the groupΓ defined byα ∈ H2(G,k∗),

1−→ k∗ −→ Γ−→G−→ 1

is finite modulok∗ and spansLα
t G overL. Wecannotsay as before thatL is spanned over

k by a group that is finite modulok∗.
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By the Galois theory,G = Gal(L/k) is a quotient group ofS= Gal(F/k), S/H ' G,
whereH = Gal(F/L).

Recall the inflation map in cohomology

inf : H2(S/H,(F∗)H)
−→ H2(S,F∗)

inf : H2(G,L∗) −→ H2(S,F∗)
α 7−→ inf(α)

and if α is represented byg, we represent inf(α) by inf(g), where inf(g)(σ ,τ) = g(σ̄ , τ̄)
with σ̄ , τ̄ in G. In particular, inf(α) may be represented by a 2-cocycle which obtains
exactly the same values as a chosen representative ofα. G is cyclic, so choose a 2-cocycle
g representingα with values ink∗. Represent inf(α) by the corresponding 2-cocycle, i.e.,
also with values ink∗. Form the crossed product

F inf(α)
t S.

Since the values of a representing 2-cocycle are ink = FS andF is a cyclotomic extension,
it is clear that

[
F inf(α)

t S
]
∈ PS(k). It remains to show that

[Lα
t G] =

[
F inf(α)

t S
]
.

We define a map

η : F inf(α)
t S −→ Mq(k)⊗k Lα

t G'Mq(Lα
t G)

' EndLα
t G

(
(Lα

t G)q),
whereq = ord(Gal(F/L)).

To this end, define an action ofF inf(α)
t Son F ⊗L Lα

t G. (Note thatF ⊗L Lα
t G' (Lα

t G)q

as a rightLα
t G module.) Forxuσ ∈ F inf(α)

t Sands⊗ω ∈ F⊗L Lα
t G we definexuσ (s⊗ω) =

xσ(s)⊗uσ̄ ω. This action commutes with the right action ofLα
t G and therefore defines a

map ofk-algebra

η : F inf(α)
t S−→ EndLα

t G
(
(Lα

t G)q).
SinceF inf(α)

t S is simple and the dimensions coincide,η must be an isomorphism. This
completes the proofPS(k) = Br(k) for number fields.

Number fields (finite extensions ofQ) contain only a finite number of roots of unity.
We would like to show now that ifk contains “enough” roots of unity, then againPS(k) =
Br(k).

Theorem 10.5. If k is a field that contains all roots of unity, then PS(k) = Br(k).

Example10.6. The fieldC contains all roots of unity butC is algebraically closed and
therefore Br(C) = PS(C) = 0.

The Brauer group ofC(x) (rational function field on one indeterminate) is also trivial.
But for k = C(x1,x2, . . . ,xn), n≥ 2, Br(k) 6= 0, and by the theorem, Br(k) = PS(k).

In order to explain this result, we need some preparation.
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11. SYMBOL ALGEBRAS

Let k be a field and assume that it contains a primitiven-th root of unityω. For given
elementsa,b∈ k we define the symbol algebra(a,b) (or (a,b)n) as follows. It is generated
overk by x,y subject to the relations

xn = a, yn = b, yx= ωxy.

It is clear that the elements{xiyi}n−1
i, j=0 span(a,b)n overk and, in fact, form a base overk.

By a shortest length argument one can show that(a,b)n is k-central simple.
The theory of symbols is of great importance in Brauer groups. On the one hand, their

structure is well understood, and on the other hand, they may be regarded as the “building
block” of the theory of Brauer groups. More precisely, Merkurjev and Suslin proved a very
deep theorem which says:

Theorem 11.1.Assume that k contains a primitive n-th root of unity. Then every element
in Br(k) of exponent dividing n is (Brauer) similar to the tensor product (over k) of symbol
algebras.

In other words, if “enough” roots of unity are present ink the symbol algebras generate
the Brauer group. More precisely (using this terminology), ifµn, then-th roots of unity,
are contained ink, then Br(k)n, the subgroup of Br(k) which consists of classes annihilated
by n, is generated by symbols. Recall that Br(k) is a torsion group, so if all roots of unity
are contained ink, then Br(k) is generated by symbols (or rather by classes represented by
symbols).

But now, from the structure of symbols, it is easy to see that a symbol algebra is a
projective Schur algebra. Indeed, it is spanned by the group of units generated byx andy
and modulok∗ is isomorphic toZn×Zn

(
xn = a∈ k∗, yn = b∈ k∗, yx= ωxy, ω ∈ k∗

)
.

We conclude that ifk contains all roots of unity, thenPS(k) = Br(k).
If k containsµn, thenPS(k)n = Br(k)n. Thus we see in two different examples that

PS(k) = Br(k). It was conjectured by Nelis and Van Oystaeyen thatPS(k) = Br(k) for
arbitrary fields. The purpose of this last part is to disprove this conjecture by analyzing the
Brauer group of rational function fields on the one hand, and on the other hand by analyzing
the structure of projective Schur algebras. It was shown by Aljadeff & Sonn (see ([AS1])
that every projective Schur algebra has an abelian splitting field, i.e., given a projective
Schur algebraA = k(Γ) overk, there exists a field extensionK with G = Gal(K/k) abelian
such thatK splitsA

(
K⊗k A'Mr(K)

)
.

However, this result is not sufficient to show thatPS(k) 6= Br(k) because it is a long
standing open problem whether every element in Br(k) has an abelian splitting field. A
year later this result was strengthened (by Aljadeff & Sonn) to the

Theorem 11.2. ([AS2]) Every element in PS(k) has an abelian splitting field which is
contained in a radical extension of k. (L/k is radical if L is obtained from k by adding
roots of elements of k, L= k(z1,z2, . . . ,zr), zni

i = ai ∈ k∗.)

This stronger result implies thatPS(k) 6= Br(k). This follows from the third

Theorem 11.3(Aljadeff & Sonn). ([AS2]) If k is a number field and k(x) denotes the
rational function field in one indeterminate, thenBr(k(x)) contains elements which are not
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split by any abelian extension, that is contained in a radical extension of k. In particular,
PS(k(x)) 6= Br(k(x)).
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